Yes, the partition gives the two brothers equal shares.
Step-by-step explanation:
Step 1:
Assume the entire field has an area of B. So one brother takes
,
, and
So we need to calculate how much this brother takes in terms of B.
To do this we calculate how much
is.
Step 2:
To add
,
First take the LCM of the denominators 12, 6, and 4
The LCM is 12, we multiply the denominator to get the LCM value, this same value is multiplied to the numerator too.
![\frac{1}{12} B + \frac{1}{6} B + \frac{1}{4} B = \frac{1(1)}{12(1)} B + \frac{1(2)}{6(2)} B + \frac{1(3)}{4(3)} B \\\\\frac{1}{12} B + \frac{1}{6} B + \frac{1}{4} B= \frac{1B +2B+3B}{12} = \frac{B}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B12%7D%20B%20%2B%20%5Cfrac%7B1%7D%7B6%7D%20B%20%2B%20%5Cfrac%7B1%7D%7B4%7D%20B%20%3D%20%5Cfrac%7B1%281%29%7D%7B12%281%29%7D%20B%20%2B%20%5Cfrac%7B1%282%29%7D%7B6%282%29%7D%20B%20%2B%20%5Cfrac%7B1%283%29%7D%7B4%283%29%7D%20B%20%5C%5C%5C%5C%5Cfrac%7B1%7D%7B12%7D%20B%20%2B%20%5Cfrac%7B1%7D%7B6%7D%20B%20%2B%20%5Cfrac%7B1%7D%7B4%7D%20B%3D%20%5Cfrac%7B1B%20%2B2B%2B3B%7D%7B12%7D%20%3D%20%5Cfrac%7BB%7D%7B2%7D)
Step 3:
One brother gets
, so we need to calculate how much the other brother gets.
The other brother's share = ![B - \frac{1}{2} B = \frac{1}{2}B](https://tex.z-dn.net/?f=B%20-%20%5Cfrac%7B1%7D%7B2%7D%20B%20%3D%20%5Cfrac%7B1%7D%7B2%7DB)
So both the brothers get equal shares