Answer:
The value of Ka 
It is a weak acid
Explanation:
From the question we are told that
The concentration of ![[HClO_2]=0.24M](https://tex.z-dn.net/?f=%5BHClO_2%5D%3D0.24M)
The concentration of ![[H^+]=0.051M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.051M)
The concentration of ![[ClO_2^-]=0.051M](https://tex.z-dn.net/?f=%5BClO_2%5E-%5D%3D0.051M)
Generally the equation for the ionic dissociation of
is

The equilibrium constant is mathematically represented as

![= \frac{[H^+][ClO_2^-]}{[HClO_2]}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%5BH%5E%2B%5D%5BClO_2%5E-%5D%7D%7B%5BHClO_2%5D%7D)
Substituting values since all value of concentration are at equilibrium


Since the value of is less than 1 it show that in water it dose not completely
disassociated so it an acid that is weak
Answer:
X represents oxygen and Y represents carbon dioxide.
Explanation:
Because in respiration, you consume oxygen and make carbon dioxide whereas, in photosynthesis, the equation is reversed and you use carbon dioxide and make oxygen and glucose.
Explanation
NaCl: Ionic crystal lattice forces
Hg: Metallic bonding
CO₂: London dispersion forces
CH₄: London dispersion forces
Li₂O: Ionic crystal lattice forces
Ag: Metallic bonds
Ionic crystal lattice forces are strong electrostatic force of attraction between oppositely charged ions arranged into a crystal lattice of ionic compound. NaCl and Li₂O are ionic compounds
London dispersion forces holds the molecules of carbon dioxide and methane. They are weak attractions found between non-polar (and polar) molecules.
Metallic bonds exists between Mercury and Gold atoms. This is due to sea of electrons present.
Answer:
vacuoles
Explanation:
Vacuoles are not only found in animal and plant cells, but on every given diagram vacuoles are huge and singular on a plant cell. Animals however, there are multiple and are much smaller