Answer:
40 moles of O₂
30 moles of CO₂
Explanation:
Given parameters:
Number of moles of C₃H₄ = 10moles
Unknown:
Number of moles of CO₂ = ?
Solution:
The number of moles helps to understand and make quantitative measurements involving chemical reactions.
We start by solving this sort of problem by ensuring that the given equation is properly balanced;
C₃H₄ + 4O₂ → 3CO₂ + 2H₂O
We can clearly see that all the atoms are conserved.
Now, we work from the known to unknown. We know the number of moles of C₃H₄ to be 10moles;
1 mole of C₃H₄ reacted with 4 moles of O₂
10 moles of C₃H₄ will react with 10 x 4 = 40moles of O₂
1 mole of C₃H₄ will produce 3 moles of CO₂
10 moles of C₃H₄ will produce 10 x 3 = 30moles of CO₂
You can pick it up and move it
It would take 147 hours for 320 g of the sample to decay to 2.5 grams from the information provided.
Radioactivity refers to the decay of a nucleus leading to the spontaneous emission of radiation. The half life of a radioactive nucleus refers to the time required for the nucleus to decay to half of its initial amount.
Looking at the table, we can see that the initial mass of radioactive material present is 186 grams, within 21 hours, the radioactive substance decayed to half of its initial mass (93 g). Hence, the half life is 21 hours.
Using the formula;
k = 0.693/t1/2
k = 0.693/21 hours = 0.033 hr-1
Using;
N=Noe^-kt
N = mass of radioactive sample at time t
No = mass of radioactive sample initially present
k = decay constant
t = time taken
Substituting values;
2.5/320= e^- 0.033 t
0.0078 = e^- 0.033 t
ln (0.0078) = 0.033 t
t = ln (0.0078)/-0.033
t = 147 hours
Learn more: brainly.com/question/6111443
It actually depends on the percentage of the concentration give. Percentages can be expressed as %mass/mass, %volume/volume or %mass/volume. To keep things simple, let's just assume that it is in %volume/volume. Thus, 13% of 520 mL is pure acid.
Volume of pure acid = 520*0.13 = 67.6 mL