Answer:
Pb⁺²(aq) + CO₃⁻²(aq) → PbCO₃ (s)
In net ionic equation we cancel the ions that have equal moles on both sides so Na⁺¹ and NO₃⁻¹ have equal moles on both sides so we canceled them.
Explanation:
Net ionic equation:
In net ionic equation we only write the ions that are involved in reaction. If the system have same moles of ions in initial and final stages we cancel them as they have the same amount and are present in ionic form in the reaction medium. To formulate an ionic equation we just cancel the ions which have the same moles in initial and final stages.
Chemical equation:
Pb(NO₃)₂ (aq) + Na₂CO₃(aq) → PbCO₃ (s) + NaNO₃ (aq)
Balanced chemical equation:
In a balanced chemical equation we write the reactants and products in molecular form with number of moles.
Pb(NO₃)₂ (aq) + Na₂CO₃(aq) → PbCO₃ (s) + 2NaNO₃ (aq)
Ionic equation:
In ionic equation we write the equation in ionic form. It involves all the ions which will produce when we add any ionic compound in reaction medium.
Pb⁺² +2NO₃⁻¹ + CO₃⁻² + 2Na⁺¹ → PbCO3 (s) + 2NO₃⁻¹ (aq) + 2Na⁺¹ (aq)
Net ionic equation
In net ionic equation we cancel the ions that have equal moles on both sides. As we can see in the above ionic equation that Na⁺¹ and NO₃⁻¹ have equal moles on both sides so we canceled them.
Pb⁺²(aq) + CO₃⁻²(aq) → PbCO₃ (s)
Answer:
![Ka=\frac{[C_6H_5O^-][H^+]}{[C_6H_5OH]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BC_6H_5O%5E-%5D%5BH%5E%2B%5D%7D%7B%5BC_6H_5OH%5D%7D)
Explanation:
Hello,
In this case, weak acids are characterized by the fact they do not dissociate completely, it means they do not divide into the conjugated base and acid at all, a percent only, which is quantified via equilibrium. In such a way, the chemical equation representing such incomplete dissociation is said to be:

Thus, we can write the law of mass action, which consider the equilibrium concentrations of all the involved species, which is also known as the acid dissociation constant which accounts for the capacity the acid has to yield hydronium ions:
![K=Ka=\frac{[C_6H_5O^-][H^+]}{[C_6H_5OH]}](https://tex.z-dn.net/?f=K%3DKa%3D%5Cfrac%7B%5BC_6H_5O%5E-%5D%5BH%5E%2B%5D%7D%7B%5BC_6H_5OH%5D%7D)
Best regards.
Answer:
C. 101.2 L
Explanation:
N2 + H2= NH3
Balancing it,
N2 + 3 H2 = 2.NH3
(1 mol) (3 mol) (2 mol)
which means
1 molecule of nitrogen reacts with 3 molecule of hydrogen to form ammonia.
Likewise,
50.6 l of nitrogen reacts with 50.6 × 3= 151.8 l of hydrogrn to form 50.6 × 2= 101.2 l of ammonia.
Answer:

Explanation:
To convert form grams to moles, the molar mass must be used. This is the mass (in grams) in 1 mole of a substance.
We can use the values on the Periodic Table. First, find the molar masses of the individual elements: carbon and oxygen.
- C: 12.011 g/mol
- O: 15.999 g/mol
Check for subscripts. The subscript of 2 after O means there are 2 oxygen atoms, so we have to multiply oxygen's molar mass by 2 before adding.
- O₂: 2* (15.999 g/mol)=31.998 g/mol
- CO₂: 12.011 g/mol + 31.998 g/mol =40.009 g/mol
Use the molar mass as a ratio.

Multiply by the given number of grams.

Flip the fraction so the grams of carbon dioxide cancel.



The original measurement of grams has 2 significant figures, so our answer must have the same. For the number we calculated, that is the thousandth place.
The ten thousandth place has a 5, so we round the 4 to a 5.

2.4 grams of carbon dioxide is about 0.055 moles.