Answer:
this statement describes meteor's velocity,
because velocity is a vector quantity which has both magnitude as well as a specific direction and here the meteor's direction is specified in the statement hence we conclude that this statement describes meteor's velocity as well as speed too.
Answer:
induced emf = 28.65 mV
Explanation:
given data
diameter = 7.3 cm
magnetic field = 0.61
time period = 0.13 s
to find out
magnitude of the induced emf
solution
we know radius is diameter / 2
radius = 7.3 / 2
radius = 3.65 m
so induced emf is dπ/dt = Adb/dt
induced emf = A × ΔB / Δt
induced emf = πr² × ΔB / Δt
induced emf = π (0..65)² × ( 0.61 - (-0.28)) / 0.13
induced emf = 0.0286538 V
so induced emf = 28.65 mV
The correct answer to the question is : B) The weight of the water, and C) The height of the water.
EXPLANATION :
Before coming into any conclusion, first we have to understand potential energy of a body.
The potential energy of a body due to its position from ground is known as gravitational potential energy.
The gravitational potential energy is calculated as -
Potential energy P.E = mgh
Here, m is the mass of the body, and g is the acceleration due to gravity.
h stands for the height of the body from the ground.
We know that weight of a body is equal to the product of mass with acceleration due to gravity.
Hence, weight W = mg
Hence, potential energy is written as P.E = weight × height.
Hence, potential energy depends on the weight and height of the water.
I’m sure gravitation should be at the river sorry if I’m wrong