(a) The coil's self-inductance is 7.26 mH.
(b) The self-induced emf in the coil is 7.26 V
(c) The direction of the induced emf is from b to a.
<h3>Coil's self-inductance</h3>
L = N²μA/I
L = (600² x 4π x 10⁻⁷ x 6.9 x 10⁻⁴)/(0.043)
L = 7.26 x 10⁻³ H
L = 7.26 mH
<h3>Self-induced emf in the coil</h3>
emf = N(ΔBA)/t
where;
- B is magnetic field
- A is area
- N is number of turns
- t is time
B = μNI/L
B1 = (4π x 10⁻⁷ x 600 x 5)/0.043
B1 = 0.0876 T
B2 = (4π x 10⁻⁷ x 600 x 2)/0.043
B2 = 0.035 T
emf = NΔBA/t
emf = (600)(0.0876 - 0.035)(6.9 x 10⁻⁴) / (3 x 10⁻³)
emf = 7.26 V
The direction of the induced emf is always opposite to the direction of the applied current.
Thus, the direction of the induced emf is from b to a.
Learn more about induced emf here: brainly.com/question/13744192
#SPJ1
1. Answer: 7.75 seconds
Explanation: 76-14=62 metres
62/8=7.75 seconds
2. Answer: 2.5 seconds
Explanation: 28-18=10 metres
10/4=2.5 seconds
Answer:

Explanation:



r = Distance between the charges



k = Coulomb constant = 
Net force is given by

The force on the particle
is
.
By definition, refractive index is the ratio of the velocity of light in vacuum to the velocity of light in a specified medium. The medium here is the liquid. The speed of light through the liquid also depends on the temperature and pressure. At sea level, the liquid is higher in temperature and pressure. So, the speed is gonna be relatively slower because of the movement of atoms. At high altitude, the liquid is at a lower temperature and pressure. The movements of the molecules are lesser, thus, light can move much faster. So, yes, it would be different. The refractive index would be closer to 1 at high altitude, and greater than 1 at sea level.