Answer:
The force that you must exert on the balloon is 1.96 N
Explanation:
Given;
height of water, h = 4.00 cm = 4 x 10⁻² m
effective area, A = 50.0 cm² = 50 x 10⁻⁴ m²
density of water, ρ = 1 x 10³ kg/m³
Gauge pressure of the balloon is calculated as;
P = ρgh
where;
ρ is density of water
g is acceleration due to gravity
h is height of water
P = 1 x 10³ x 9.8 x 4 x 10⁻²
P = 392 N/m²
The force exerted on the balloon is calculated as;
F = PA
where;
P is pressure of the balloon
A is the effective area
F = 392 x 50 x 10⁻⁴
F = 1.96 N
Therefore, the force that you must exert on the balloon is 1.96 N
Answer:
The specific kinetic energy of a mass is 0.8 kJ/kg
Explanation:
Given that,
Velocity = 40 m/s
Specific kinetic energy is the kinetic energy per unit mass.
We need to calculate the specific kinetic energy
Using formula of specific kinetic energy


Put the value into the formula


We know that,
1 kJ = 1000 J
or, 1J=0.001 KJ
The specific energy is


Hence, The specific kinetic energy of a mass is 0.8 kJ/kg
Moving clouds. The doppler effect is specifically used to measure motion.
Answer:
P₂ = 1.22 kPa
Explanation:
This problem can be solved using the equation of state:

where,
P₁ = initial pressure = 1 KPa
P₂ = final pressure = ?
V₁ = initial Volume = 1 liter
V₂ = final volume = 1.1 liter
T₁ = initial temperature = 290 k
T₂ = final temperature = 390 k
Therefore,

<u>P₂ = 1.22 kPa</u>
Answer:
if it is at a speed of 12.5 m / s it would take 2 minutes
Explanation: