Answer:
Explanation:
a ) It is given that bomb was at rest initially , so , its momentum before the explosion was zero.
b ) We shall apply law of conservation of momentum along x and y direction separately because no external force acts on the bomb.
If v be the velocity of the third part along a direction making angle θ
with x axis ,
x component of v = vcosθ
So momentum along x axis after explosion of third part = mv cosθ
= 10 v cosθ
Momentum along x of first part = - 5 x 42 m/s
momentum of second part along x direction =0
total momentum along x direction before explosion = total momentum along x direction after explosion
0 = - 5 x 42 + 10 v cosθ
v cosθ = 21
Similarly
total momentum along y direction before explosion = total momentum along y direction after explosion
0 = - 5 x 38 + 10 v sinθ
v sinθ= 21
squaring and and then adding the above equation
v² cos²θ +v² sin²θ = 21² +19²
v² = 441 + 361
v = 28.31 m/s
Tanθ = 21 / 19
θ = 48°
Answer:
yes because there is also a theory about this I studied in biology
theory name -Lamarck's theory
Answer:
897
Explanation:
Speed of the car, v = 126 km/h, converting to m/s, we have v = 35 m/s and
Radius of the curve, R = 150 mm = 0.15 m
The centripetal acceleration a(c) is given by the formula = v² / R so that
a(c) = 35² / 0.15
a(c) = 1225 / 0.15
a(c) = 8167 m/s²
The force that causes the acceleration is frictional force = µ m g, where
µ = coefficient of friction
m = the mass of the car and
g = acceleration due to gravity, 9.81
From Newton's law:
µ m g = m a(c) , so that
µ = a(c) / g
µ = 8167 / 9.81
µ = 897
Therefore, the coefficient of static friction must be as big as 897
The array of colors observed when viewing films of soap are caused by the interference, and from the reflections of light from two nearby surfaces (outer surface and inner surface). Among the choices, the closest answer would be B. reflection, refraction, and interference.
Answer:1.81
(a) Explanation:the turn ratio= input voltage÷output voltage.
400÷220=1.81.
Don't know how to solve b part...