ITS OK DONT MARK ME AS BRAINLIEST CAUSE IM PRETTY SURE LKJNTF CAN ANSWER IT
Answer:
1 to 20 that have the same mean, median, and range. ... The set {3,3,5,6,8} contains 5 whole numbers whose mean, median, and range are 5
Answer:
The possible values of <em>S</em><em> </em>are the values between 37 and 49. (Excluding 37 and 49)
Step-by-step explanation:
If the perimeter of the square must be greater than 148 inches but less than 196 inches.
And perimeter of a square = 4<em>s</em>
We intend to find the values of <em>s</em><em> </em>such that:
148 < 4<em>s</em><em> </em>
¹⁴⁸⁄₄ < ⁴<em>ˢ</em>/₄
37 < <em>s</em><em> </em>
Also:
4<em>s</em> < 196
<em>s</em><em> </em>< ¹⁹⁶⁄₄
<em>s</em><em> </em>< 49
Therefore:
37 < <em>s</em><em> </em>< 49.
The possible values of <em>s</em><em> </em>are the values between 37 and 49. (Excluding 37 and 49.)
Solve for x

Let's solve the equation step-by-step.

For this equation: a=6, b=-11, c= -10
Step 1: Use quadratic formula with a=6, b=-11, c=-10.
![\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \\ \\ x=\frac{-(-11)\pm\sqrt[]{(-11)^2^{}-4\times6\times-10}}{2\times6} \\ \\ x=\frac{11\pm\sqrt[]{361}}{12} \\ \\ x=\frac{5}{2\text{ }}\text{ or x=}-\frac{2}{3} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B-%28-11%29%5Cpm%5Csqrt%5B%5D%7B%28-11%29%5E2%5E%7B%7D-4%5Ctimes6%5Ctimes-10%7D%7D%7B2%5Ctimes6%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B11%5Cpm%5Csqrt%5B%5D%7B361%7D%7D%7B12%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B5%7D%7B2%5Ctext%7B%20%7D%7D%5Ctext%7B%20or%20x%3D%7D-%5Cfrac%7B2%7D%7B3%7D%20%5Cend%7Bgathered%7D)
Answer