0.216 moles of gas can the container hold if a sealed container can hold 0.325 L of gas at 1.00 atm and 293 K.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
R = gas constant = 0.08206 L.atm / mol K
T = temperature, Kelvin
V=5 L
P = 1.05 atm
T = 296 K
Putting value in the given equation:


Moles = 0.216 moles
Hence, 0.216 moles of gas can the container hold if a sealed container can hold 0.325 L of gas at 1.00 atm and 293 K.
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
Rarely they can't with just sight. Certain tests or experiments should take place
Answer:
molar mass of methane CH4
= C + 4 H
= 12.0 + 4 x 1.008
= 12.0 + 4.032
= 16.042g/mol
7.31 x 10^25 molecules x 1 mole CH4 = 121.43 moles
6.02 x 10^23 CH4 molecules
121.43 moles CH4 are present.
Explanation:
not to certain if this is right or not.. but hope it helps!