Answer:
4 hoop, disk, sphere
Explanation:
Because
We are given data that
Hoop, disk, sphere have Same mass and radius
So let
And Initial angular velocity, = 0
The Force on each be F
And Time = t
Also let
Radius of each = r
So let's find the inertia shall we!!
I1 = m r² /2
= 0.5 mr² the his is for dis
I2 = m r² for hoop
And
Moment of inertia of sphere wiil be
I3 = (2/5) mr²
= 0.4 mr²
So
ωf = ωi + α t
= 0 + ( τ / I ) t
= ( F r / I ) t
So we can see that
ωf is inversely proportional to moment of inertia.
And so we take the
Order of I ( least to greatest ) :
I3 (sphere) , I1 (disk) , I2 (hoop) , ,
Order of ωf: ( least to greatest)
That of omega xf is the reverse of inertial so
hoop, disk, sphere
Option - 4
Answer:
Explanation:
The first method to engage is to listen to where the sound of air in the inner Tor escaping originated and look to see if u can find it. You can then feel the escape air with your hand.
You can Put it inside a container of water and see the bubble and rotate the inner tube to pass all of it through the water
Answer:
The total energy of the composite system is 7.8 J.
Explanation:
Given that,
Height = 0.15 m
Radius of circular arc = 0.27 m
Suppose, the entire track is friction less. a bullet with a m₁ = 30 g mass is fired horizontally into a block of wood with m₂ = 5.29 kg mass. the acceleration of gravity is 9.8 m/s.
Calculate the total energy of the composite system at any time after the collision.
We need to calculate the total energy of the composite system
Total energy of the system at any time = Potential energy of the system at the stopping point


Put the value in to the formula


Hence, The total energy of the composite system is 7.8 J.
Answer:
48kg
Explanation:
i could be wrong if i am srry
Answer:
The index of refraction of the liquid is n = 1.33 equivalent to that of water
Explanation:
Solution:-
- The index of refraction of light in a medium ( n ) determines the degree of "bending" of light in that medium.
- The index of refraction is material property and proportional to density of the material.
- The denser the material the slower the light will move through associated with considerable diffraction angles.
- The lighter the material the faster the light pass through the material without being diffracted as much.
- So, in the other words index of refraction can be expressed as how fast or slow light passes through a medium.
- The reference of comparison of how fast or slow the light is the value of c = 3.0*10^8 m/s i.e speed of light in vacuum or also assumed to be the case for air.
- so we can mathematically express the index of refraction as a ratio of light speed in the material specified and speed of light.
- The light passes through a liquid with speed v = 2.25*10^8 m/s :

- The index of refraction of the liquid is n = 1.33 equivalent to that of water.