E = mc^2
m = e/c^2
m = 2.7*10^16/(300000^2)
m = 300000
Answer:
<h2>Part A)</h2><h2>Acceleration of the ball is 10.1 m/s/s</h2><h2>Part B)</h2><h2>the final speed of the ball is given as</h2><h2>

</h2>
Explanation:
Part a)
As we know that drag force is given as






so we have


So acceleration of the ball is



Part B)
As per kinematics we know that



Answer:I=12 A
Explanation:
Given
Resistance 
Voltage 
According to ohm's law current through a conductor is directly proportional to the voltage applied.


where V=Voltage
I=Current
R=resistance



Explanation:
Okay, well, Saturn's rings form a wide and complex system, consisting mostly of particles and pieces of ice, and are highly visible. They may have formed from one or more moons that broke up due to a collision, or are left over from early debris that never coalesced into a moon... And, The rings of Uranus are thin and hard to see, consisting mostly of chunks of carbon and hydrocarbons with very little reflectivity. They may also have formed from the breakup of a small moon due to a collision. They may be kept thin by the presence of shepherd moons.
Hope I helped !
:)
Answer:
b) vary with the frequency of the light
Explanation:
The phone electric effect can be expressed as
K.E=(hv -W•)
Where K.E is the Kinectic energy
W• = work function of the metal
ν =frequency of the radiation
h = Planck's constat
Then, we can see that K.E is proportional linearly to "v" in the equation above.
Therefore, When light is directed on a metal surface, the kinetic energies of the photoelectrons vary with the frequency of the light