Answer:
4N
Explanation:
a = (7-3)/5 = 0.8m/s^2
F = ma = (5)(0.8) = 4 Newtons
Answer:
a) "gravitation" is the force causing you to go down a waterslide
b) It is "fluid friction" as a solid object (our body) moves over a fluid (the water)
c) It would become "sliding friction" since two solid surfaces slide over each other
d) fluid friction being the weakest friction, switching to sliding friction means a higher decrease in speed and therefore removing the water from a slide will decrease our speed
Impulse is (force) x (time).
That's the <em>last choice</em> on the list. It could be 'D', or '4', or 'Δ', or 'ד' etc.
If you play with it for a while, you discover that impulse has the same units as momentum, which certainly gives you something to think about.
Angular acceleration is simply the ratio of the Torque
over the rotation inertia, that is:
Angular acceleration = Torque / Rotational inertia
So substituting the values:
Angular acceleration = 2.4 N m / 4.0 kg m2
<span>Angular acceleration = 0.7 rad/s^2</span>
Answer:
Natalie says that all things with mass have a gravitational field, but the force is very weak and cannot be perceived around small objects.
Explanation:
The force due to gravity is proportional to the mass of the object and inversely proportional to the square of the distance between objects. The Earth is so massive that the force due to its gravity is much greater than the force between objects on the counter.
If there were no friction, the objects might move toward each other, depending on what other masses were near them tending to cause them to move in other directions.
Natalie's explanation is about the best.
__
<em>Additional comment</em>
The universal gravitational constant was determined by Henry Cavendish in the late 18th century using lead balls weighing 1.6 pounds and 348 pounds. His experiment was enclosed in a large wooden box to minimize outside effects. While these masses are somewhat greater than those of a glue bottle and stapler, the experiment shows the force of gravity between "small" objects <em>can</em> be measured.