Answer:
The ball stops instantaneously at the topmost point of the motion.
Explanation:
Assume we have thrown a ball up in the air. For that we have given a force on the ball and it acquires an initial velocity in the upward direction.
The forces that resist the motion of the ball in the upward direction are the force of gravity and air resistance. The ball will instantaneously come to rest when the velocity of the ball reduces to zero.
The two forces acting in the downward direction reduces its speed continuously and it becomes zero at the topmost point.
Answer:
55.56kg
Explanation:
Given:
F= 52N
a=0.936m/s²
Applyinc Newton's second law, that states: force is equal to mass times acceleration.
F = ma
m=F/a =>52 / 0.936
m=55.56kg
Answer:
scratching a surface to make it rougher
increasing the size of a flying object
adding extra weight to an object
Explanation:
Answer:
magnitude: 21.6; direction: 33.7 degrees
Explanation:
When we multiply a vector by a scalar, we have to multiply each component of the vector by the scalar number. In this case, we have
vector: (-3,-2)
Scalar: -6
so the vector multiplied by the scalar will have components

The magnitude is given by Pythagorean's theorem:

and the direction is given by the arctan of the ratio between the y-component and the x-component:

Answer: Bohr's model (1913)
Niels Bohr improved Rutherford's model. Using mathematical ideas, he showed that electrons occupy shells or energy levels around the nucleus. The Dalton model has changed over time because of the discovery of subatomic particles.
Bohr's model (1913)
Niels Bohr improved Rutherford's model. Using mathematical ideas, he showed that electrons occupy shells or energy levels around the nucleus. The Dalton model has changed over time because of the discovery of subatomic particles
Dalton's atomic theory proposed that all matter was composed of atoms, indivisible and indestructible building blocks. While all atoms of an element were identical, different elements had atoms of differing size and mass.
John Dalton
The idea that everything is made of atoms was pioneered by John Dalton (1766-1844) in a book he published in 1808. He is sometimes called the "father" of atomic theory, but judging from this photo on the right "grandfather" might be a better term.
Explanation: