<span>Venus, Uranus, and Pluto are exceptions</span>
Answer:
Explanation:
Usually the angle between the y axis and x axis is 90° and we know that for furthest travel the degree angle must be 45° with the horizontal, Mo must release the ball about halfway between straight ahead and straight up
Answer:
114.86%
Explanation:
In both cases, there is a vertical force equal to the sprinter's weight:
Fy = mg
When running in a circle, there is an additional centripetal force:
Fx = mv²/r
The net force is found with Pythagorean theorem:
F² = Fx² + Fy²
F² = (mv²/r)² + (mg)²
F² = m² ((v²/r)² + g²)
F = m √((v²/r)² + g²)
Compared to just the vertical force:
F / Fy
m √((v²/r)² + g²) / mg
√((v²/r)² + g²) / g
Given v = 12 m/s, r = 26 m, and g = 9.8 m/s²:
√((12²/26)² + 9.8²) / 9.8
1.1486
The force is about 114.86% greater (round as needed).
Answer:
<em>11.06m/s²</em>
Explanation:
According to Newtons second law of motion

Given
Mass m = 17kg
Fm = 208N
theta = 36 degrees
g = 9.8m/s²
a is the acceleration
Substitute
208 - 0.148(17)(9.8)cos 36 = 17a
208 - 24.6568cos36 = 17a
208 - 19.9478 = 17a
188.05 = 17a
a = 188.05/17
a = 11.06m/s²
<em>Hence the the magnitude of the resulting acceleration is 11.06m/s²</em>
Force=A×M
10m/s×0.20kg
=2Newton