C Occupational Safety and Health Administration
Answer:
Refer to the attachment for solution (1).
<h3><u>Calculating time taken by it to stop (t) :</u></h3>
By using the second equation of motion,
→ v = u + at
- v denotes final velocity
- u denotes initial velocity
- t denotes time
- a denotes acceleration
→ 0 = 5 + (-5/6)t
→ 0 = 5 - (5/6)t
→ 0 + (5/6)t = 5
→ (5/6)t = 5
→ t = 5 ÷ (5/6)
→ t = 5 × (6/5)
→ t = 6 seconds
→ Time taken to stop = 6 seconds
Answer:

Explanation:
The strength of the electric field produced by a charge Q is given by

where
Q is the charge
r is the distance from the charge
k is the Coulomb's constant
In this problem, the electric field that can be detected by the fish is

and the fish can detect the electric field at a distance of

Substituting these numbers into the equation and solving for Q, we find the amount of charge needed:

Answer:
Use the right-hand rule for magnetic force to determine the charge on the moving particle.
This is a
negative
charge
Explanation: