Well first of all, when it comes to orbits of the planets around
the sun, there's no such thing as "orbital paths", in the sense
of definite ("quantized") distances that the planets can occupy
but not in between. That's the case with the electrons in an atom,
but a planet's orbit can be any old distance from the sun at all.
If Mercury, or any planet, were somehow moved to an orbit closer
to the sun, then ...
-- its speed in orbit would be greater,
-- the distance around its orbit would be shorter,
-- its orbital period ("year") would be shorter,
-- the temperature everywhere on its surface would be higher,
-- if it has an atmosphere now, then its atmosphere would become
less dense, and might soon disappear entirely,
-- the intensity of x-rays, charged particles, and other forms of
solar radiation arriving at its surface would be greater.
Set deer A's position to be the origin. Let
be the distance from deer A to deer C. We're given that deer B is 95 m away from deer C, which means the length of the vector
is 95 (or
). Then




Answer:
α = 1.114 × 10⁻³ (°C)⁻¹
Explanation:
Given that:
Length of rod (L) = 1.5 m,
Diameter (d) = 0.55 cm,
Area (A) = 
Radius (r) = d / 2 = 0.275 cm,
Voltage across the rod (V) = 15.0 V.
At initial temperature (T₀) = 20°C, the current (I₀) = 18.8 A while at a temperature (T) = 92⁰C, the current (I) = 17.4 A
a) The resistance of the rod (R) is given as:

Therefore the resistivity and for the material of the rod at 20 °C (ρ) is:
b) The temperature coefficient of resistivity at 20°C for the material of the rod (α) can be gotten from the equation:
![R_T=R_0[1-\alpha (T-T_0)]\\but,R_T=\frac{V}{I}=\frac{15}{17.4}=0.862\\](https://tex.z-dn.net/?f=R_T%3DR_0%5B1-%5Calpha%20%28T-T_0%29%5D%5C%5Cbut%2CR_T%3D%5Cfrac%7BV%7D%7BI%7D%3D%5Cfrac%7B15%7D%7B17.4%7D%3D0.862%5C%5C)
Rearranging to make α the subject of formula:

Answer:
the answer is C
Explanation:
C) friction - mechanical - electrical
Answer:
100 N
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 5 kg
Acceleration (a) = 20 m/s
Force (F) =?
Force is simply defined as the product of mass and acceleration. Mathematically, it can be expressed as:
Force (F) = mass (m) × acceleration (a)
F = ma
With the above formula, we can obtain the force need to move the object. This can be obtained as follow:
Mass (m) = 5 kg
Acceleration (a) = 20 m/s
Force (F) =?
F = ma
F = 5 × 20
F = 100 N
Therefore, a force of 100 N is needed to move the object.