The big bang theory is the most accepted theory regarding the origin of the solar system. It suggests that our star, the Sun, was first created by a cloud of<span>dust and gas.</span>
We would have to search at least 5,000,000,000 (5 billion) stars before we would expect to hear a signal.
To find out the number of stars that we will need to search to find a signal, we need to use the following formula:
- total of stars/civilizations
- 500,000,000,000 (500 billion) stars / 100 civilization = 5,000,000,000 (5 billion)
This shows it is expected to find a civilization every 5 billion stars, and therefore it is necessary to search at least 5 billion stars before hearing a signal from any civilization.
Note: This question is incomplete; here is the complete question.
On average, how many stars would we have to search before we would expect to hear a signal? Assume there are 500 billion stars in the galaxy.
Assuming 100 civilizations existed.
Learn more about stars in: brainly.com/question/2166533
Do all you can in one big day that you have time off or work on one thing then work on the other at the same time
Answer:
The percentage of its mechanical energy does the ball lose with each bounce is 23 %
Explanation:
Given data,
The tennis ball is released from the height, h = 4 m
After the third bounce it reaches height, h' = 183 cm
= 1.83 m
The total mechanical energy of the ball is equal to its maximum P.E
E = mgh
= 4 mg
At height h', the P.E becomes
E' = mgh'
= 1.83 mg
The percentage of change in energy the ball retains to its original energy,
ΔE % = 45 %
The ball retains only the 45% of its original energy after 3 bounces.
Therefore, the energy retains in each bounce is
∛ (0.45) = 0.77
The ball retains only the 77% of its original energy.
The energy lost to the floor is,
E = 100 - 77
= 23 %
Hence, the percentage of its mechanical energy does the ball lose with each bounce is 23 %
1.false
2.true
3.true
4.true
5.false/not entirely sure
6.true