The big bang theory is the most accepted theory regarding the origin of the solar system. It suggests that our star, the Sun, was first created by a cloud of<span>dust and gas.</span>
<span>This problem is relatively simple, in order to solve this problem the only formula you need to know is the formula for friction, which is:
Ff = UsN
where Us is the coefficient of static friction and N is the normal force.
In order to get the crate moving you must first apply enough force to overcome the static friction:
Fapplied = Ff
Since Fapplied = 43 Newtons:
Fapplied = Ff = 43 = UsN
and it was given that Us = 0.11, so all you have to do is isolate N by dividing both sides by 0.11
43/0.11 = N = 390.9 which is approximately 391 or C. 3.9x10^2</span>
Answer:
Resistance of the second wire is twice the first wire.
Explanation:
Let us first see the formula of resistance;
R = pxL/A
Here L is the lenght of the wire, A the area and p is the resistivity of wire.
As we are given that the length of second wire is double than that of the first wire, hence the resistance of second wire would be double.
Since we have two loop in second case, inducing double voltage but as resistance is doubled so the current would remain same according to ohms law
I = V/R
Answer:
A because the bigger it is the the more force needs to act apond it
Explanation:
Answer:
B. 17,705.1 J
Explanation:
The hear released when the mercury condenses into a liquid is given by:

where
m = 0.06 kg is the mass of the mercury
is the latent heat of vaporization
For mercury, the latent heat of vaporization is
, so the heat released during the process is:

So, the closest option is
B. 17,705.1 J