1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
brilliants [131]
3 years ago
7

It is correct to say that impulse is equal toA) momentum.B) the change in momentum.C) the force multiplied by the distance the f

orce acts.D) all of the aboveE) none of the above
Physics
1 answer:
goldenfox [79]3 years ago
8 0

Answer:

B) the change in momentum

Explanation:

Impulse is defined as the product between the force exerted on an object (F) and the contact time (\Delta t)

I=F \Delta t

Using Newton's second law (F = ma), we can rewrite the force as product of mass (m) and acceleration (a):

I=(ma) \Delta t

However, the acceleration is the ratio between the change in velocity (\Delta v) and the contact time (\Delta t): a=\frac{\Delta v}{\Delta t}, so the previous equation becomes

I=m \frac{\Delta v}{\Delta t}\Delta t

And by simplifying \Delta t,

I=m \Delta v

which corresponds to the change in momentum of the object.

You might be interested in
Please help I cannot fail!
alekssr [168]
Reactants
C8H18
O2

Products
CO2
H2O
4 0
2 years ago
Two stationary point charges of 3.00 nC and 2.00 nC are separated by a distance of 50.0 cm. An electron is released from rest at
andrew-mc [135]

Answer:

1. the electric potential energy of the electron when it is  at the midpoint is - 2.9 x 10^{-17} J

2. the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge is - 5.04 x  10^{-17} J

Explanation:

given information:

q_{1} =  3 nC = 3 x 10^{-9} C

q_{2} =  2 nC = 2 x 10^{-9} C

r = 50 cm = 0.5 m

the electric potential energy of the electron when it is  at the midpoint

potential energy of the charge, F

F = k \frac{q_{e}q}{r}

where

k = constant (8.99 x 10^{9} Nm^{2} /C^{2})

electron charge, q_{e} = - 1.6 x 10^{-19} C

since it is measured at the midpoint,

r = \frac{0.5}{2}

  = 0.25 m

thus,

F = F_{1}+ F_{2}

  = k\frac{q_{e} q_{1} }{r} + k\frac{q_{e} q_{2} }{r}

  = \frac{kq_{e} }{r} (q_{1} +q_{2})

  = (8.99 x 10^{9})( - 1.6 x 10^{-19} )(3 x 10^{-9} +2 x 10^{-9})/0.25

  = - 2.9 x 10^{-17} J

the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge

r_{1} = 10 cm = 0.1 m

r_{2} = 0.5 - 0.1 = 0.4 m

F = k\frac{q_{e} q_{1} }{r} + k\frac{q_{e} q_{2} }{r}

  = kq_{e}(\frac{q_{1} }{r_{1} }+\frac{q_{2} }{r_{2} })

  = (8.99 x 10^{9})( - 1.6 x 10^{-19} )(3 x 10^{-9} /0.1+2 x 10^{-9}/0.4)

  = - 5.04 x  10^{-17} J

3 0
3 years ago
A car accelerates from rest at 1.0 m/s2 for 20.0 second along a straight road. It then moves at a constant speed for half an hou
Whitepunk [10]

Total distance = 36500 m

The average velocity = 19.73 m/s

<h3>Further explanation</h3>

Given

vo=initial velocity=0(from rest)

a=acceleration= 1 m/s²

t₁ = 20 s

t₂ = 0.5 hr = 1800 s

t₃= 30 s

Required

Total distance

Solution

State 1 : acceleration

\tt d=vo.t+\dfrac{1}{2}at^2\\\\d=\dfrac{1}{2}\times 1\times 20^2\rightarrow vo=0\\\\d=200~m

\tt vt=vo+at\\\\vt=at\rightarrow vo=0\\\\vt=1\times 20\\\\vt=20~m/s

State 2 : constant speed

\tt d=v\times t\\\\d=20\times 1800\\\\d=36000~m

State 3 : deceleration

\tt vt=vo+at\rightarrow vt=0(stop)\\\\vo=-at\\\\20=-a.30~s\\\\a=-\dfrac{2}{3}m/s^2(negative=deceleration)

\tt d=vot+\dfrac{1}{2}at^2\\\\d=20.30-\dfrac{1}{2}.\dfrac{2}{3}.30^2\\\\d=300~m

Total distance : state 1+ state 2+state 3

\tt 200 + 36000 + 300=36500~m

the average velocity = total distance : total time

\tt avg~velocity=\dfrac{36500}{20~s+1800~s+30~s}=19.73~m/s

4 0
2 years ago
A sound wave has frequency 620 Hz and wavelength 10.5 m. What is the speed of sound waves?
olasank [31]

Answer:

14

Explanation:

A sound wave in a steel rail has a frequency of 620 Hz and a wavelength of 10.5 m. What is the speed of sound in steel? U f = ? S f = 3 x 108 m/s) / 0.06 m 14 so it will be 14

7 0
2 years ago
How do mass and speed affect kinetic energy?
Lunna [17]
The mass affects the kinetic energy because the more the mass the more energy is given to the object and the speed<span> affects by making it go faster and longer, so whenever speed goes up so does energy.</span>
6 0
3 years ago
Read 2 more answers
Other questions:
  • What are the primary methods by which planets have been found around other stars in our galaxy
    12·1 answer
  • In a closed system, the loss of momentum of one object ________ the gain in momentum of another object.
    11·1 answer
  • What is 300N divided by 25 kg?
    15·1 answer
  • This force involves the attraction between objects with mass.
    8·2 answers
  • A block and a ball have the same mass and move with the same initial velocity across a floor and then encounter identical ramps.
    15·1 answer
  • The time between a lightning flash and the following thunderclap may be used to estimate, in kilometers, how far away a storm is
    7·1 answer
  • Convection currents not only in the Earth's core but in what?
    5·1 answer
  • Can someone pls help me with this problem???
    7·1 answer
  • Explain the different types of energy in a working wind turbine
    12·1 answer
  • In any ecosystem_______, are the point of entry for new energy
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!