Answer:
The area of the triangle is: "
8.5 cm² " ;
or, write as: "
8
cm² " .
_______________________________________________________Explanation:_________________________________________________________The formula {"equation"} for the area of a triangle is:
A = (

) * b * h ;
in which: A = area;
b = base;
h = [perpendicular] height;
___________________________________{also, can be written as: " A = (b * h) / 2 " .}.
______________________________________Solve for the area, "A" ; by plugging in the known values shown in the figure (image attached):
______________________________________
base, "b" = 13 cm ;
[perpendicular] height, "h" = 5 cm ;
______________________________________A = (b * h) / 2 ;
= (13 cm * 5 cm) / 2 ;
= [ (13 * 5) cm²] / 2 ;
= 65 cm² / 2 ;
A = "
8.5 cm² " ; or, write as: "
8
cm² " .
_________________________________________________________Answer:
"
8.5 cm² " ; or, write as: "
8
cm² " .
_________________________________________________________The area of the triangle is:
"
8.5 cm² " ;
or, write as: "
8
cm² " .
_________________________________________________________
Answer:
Answer:
The width is 4 units, and the length is 10 units.
Step-by-step.
Step-by-step explanation:
area of rectangle = length * width
Let L = length; let W = width.
"The length is 6 units greater than the width.": L = W + 6
area = LW = 40
Since L = W + 6, we substitute L with W + 6.
(W + 6)W = 40
W^2 + 6W = 40
W^2 + 6W - 40 = 0
(W - 4)(W + 10) = 0
W - 4 = 0 or W + 10 = 0
W = 4 or W = -10
A width cannot be a negative number, so we discard the solution W = -10.
W = 4
L = W + 6 = 4 + 6 = 10
The width is 4 units, and the length is 10 units.
The answer to the question
Answer:
see the explanation
Step-by-step explanation:
First way
we know that
The sum of the interior angles of a triangle must be equal to 180 degrees
so
In this problem
37+97+134 > 180
therefore
At least one of Franklin's measures is incorrect
Second way
we know that
A triangle can only have at most one obtuse internal angle.
In this problem the triangle has two obtuse internal angles
Remember that an obtuse angle is an angle greater than 90 degrees
therefore
At least one of Franklin's measures is incorrect