The number of complete cycles the rotating mirror goes through before the angular velocity gets to zero is approximately 1166.8 revs
<h3>What is angular velocity?</h3>
Angular velocity is the ratio of the angle turned to the time taken.
The kinematic equation for angular velocity are presented as follows;
ω = ω₀ + α·t
θ = θ₀ + ω₀·t + 0.5·α·t²
Where;
θ₀ = The initial angle turned = 0
ω₀ = The initial angular velocity of the mirrors = 115 rad/s clockwise
α = The angular acceleration = (115 - (-115))rad/s/(85 s) = -46/17 m/s²
t = The duration of the motion;
When the angular velocity, ω is zero, we get;
0 = 115 - 46/17·t
t = 85/2
Which indicates;
θ = 0 + 115× (85/2) + 0.5×(46/17) ×(85/2)² = 7331.25
θ = 7331.25 radians
θ = 7331.25/(2×π) ≈ 1166.8 rev
The mirrors would have turned through approximately 1166.8 revolutions when the angular gets to zero
Learn more about angular velocity and acceleration here:
brainly.com/question/13014974
#SPJ1
Answer: 585 J
Explanation:
We can calculate the work done during segment A by using the work-energy theorem, which states that the work done is equal to the gain in kinetic energy of the object:

where Kf is the final kinetic energy and Ki the initial kinetic energy. The initial kinetic energy is zero (because the initial velocity is 0), while the final kinetic energy is

The mass is m=1.3 kg, while the final velocity is v=30 m/s, so the work done is:

Answer:
a. a=33.34ms⁻², V=164.4m/s
Explanation:
Since the dragster started with zero velocity, de determine the acceleration using of the equations of motion.
Below are the data given
Distance, s=404.5m,
time taken,t=4.922secs
Using the equation
S=ut+1/2at²
where u is the initial velocity and u=0
Making the acceleration the subject of the formula, we arrive at
a=2s/t²
a=(2*404.5)/4.922²
a=33.34ms⁻².
To determine the velocity, we use
V=u+at
V=0+33.34ms⁻² *4.922sec
V=164.4m/s
All matter is made up of subatomic particles that contain atoms. This is false statement.
Everything in the universe is made of matter, and so, everything in the universe is made of atoms. An atom itself is made up of three tiny kinds of particles called subatomic particles: <u>protons, neutrons, and electrons</u>.
All matter is made up of substances called elements, which have specific chemical and physical properties and cannot be broken down into other substances through ordinary chemical reactions.
Matter is anything which have mass and occupy some volume.
On earth, solid, liquid, and gas are the most common states of matter. Not only is water the most common substance on earth, but it is also the only substance that commonly appears as a solid, a liquid, and a gas within the normal range of earth's temperatures.
Learn more about matter here:- brainly.com/question/16982523
#SPJ9
Answer:
The correct answer is the third option: The kinetic energy of the water molecules decreases.
Explanation:
Temperature is, in depth, a statistical value; kind of an average of the particles movement in any physical system (such as a glass filled with water). Kinetic energy, for sure, is the energy resulting from movement (technically depending on mass and velocity of a system; in other words, the faster something moves, the greater its kinetic energy.
Since temperature is related to the total average random movement in a system, and so is the kinetic energy (related to movement through velocity), as the thermometer measures <u>less temperature</u>, that would mean that the particles (in this case: water particles) are <u>moving slowly</u>, so that: the slower something moves, the lower its kinetic energy.
<u>In summary:</u> temperature tells about how fast are moving and colliding the particles within a system, and since it is <em>directly proportional</em> to the amount of movement, it can be related (also <em>directly proportional</em>) to the kinectic energy.