1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
il63 [147K]
3 years ago
12

What is the density of an object with the mass of 125g and a volume of 176 m

Physics
2 answers:
nordsb [41]3 years ago
7 0

Answer:

the density is mass over volume, so you divide 125g over 25 cm3, giving a result of 5 g/cm3

mars1129 [50]3 years ago
5 0

Answer:

The density is mass over volume

so you divide 125g over 25 cm3

giving a result of 5 g/cm3

you welcome have a good day!

You might be interested in
The bigclaw snapping shrimp shown in (Figure 1) is aptly named--it has one big claw that snaps shut with remarkable speed. The p
leva [86]

1) 1.86\cdot 10^6 rad/s^2

2) 2418 rad/s

3) 27000 m/s^2

4) 36.3 m/s

Explanation:

1)

The angular acceleration of an object in rotation is the rate of change of angular velocity.

It can be calculated using the following suvat equation for angular motion:

\theta=\omega_i t +\frac{1}{2}\alpha t^2

where:

\theta is the angular displacement

\omega_i is the initial angular velocity

t is the time

\alpha is the angular acceleration

In this problem we have:

\theta=90^{\circ} = \frac{\pi}{2}rad is the angular displacement

t = 1.3 ms = 0.0013 s is the time elapsed

\omega_i = 0 is the initial angular velocity

Solving for \alpha, we find:

\alpha = \frac{2(\theta-\omega_i t)}{t^2}=\frac{2(\pi/2)-0}{0.0013}=1.86\cdot 10^6 rad/s^2

2)

For an object in accelerated rotational motion, the final angular speed can be found by using another suvat equation:

\omega_f = \omega_i + \alpha t

where

\omega_i is the initial angular velocity

t is the time

\alpha is the angular acceleration

In this problem we have:

t = 1.3 ms = 0.0013 s is the time elapsed

\omega_i = 0 is the initial angular velocity

\alpha = 1.86\cdot 10^6 rad/s is the angular acceleration

Therefore, the final angular speed is:

\omega_f = 0 + (1.86\cdot 10^6)(0.0013)=2418 rad/s

3)

The tangential acceleration is related to the angular acceleration by the following formula:

a_t = \alpha r

where

a_t is the tangential acceleration

\alpha is the angular acceleration

r is the distance of the point from the centre of rotation

Here we want to find the tangential acceleration of the tip of the claw, so:

\alpha = 1.86\cdot 10^6 rad/s is the angular acceleration

r = 1.5 cm = 0.015 m is the distance of the tip of the claw from the axis of rotation

Substituting,

a_t=(1.86\cdot 10^6)(0.015)=27900 m/s^2

4)

Since the tip of the claw is moving by uniformly accelerated motion, we can find its final speed using the suvat equation:

v=u+at

where

u is the initial linear speed

a is the tangential acceleration

t is the time elapsed

Here we have:

a=27900 m/s^2 (tangential acceleration)

u = 0 m/s (it starts from rest)

t = 1.3 ms = 0.0013 s is the time elapsed

Substituting,

v=0+(27900)(0.0013)=36.3 m/s

5 0
3 years ago
Why is the Mid-Atlantic Ridge an ideal place for SWARM to collect electrical conductivity data?
ElenaW [278]

Answer: Mid-ocean ridges are geologically important because they occur along the kind of plate boundary where new ocean floor is created as the plates spread apart. Thus the mid-ocean ridge is also known as a "spreading center" or a "divergent plate boundary." The plates spread apart at rates of 1 cm to 20 cm per year.

3 0
3 years ago
Read 2 more answers
A 1.8-kg object is attached to a spring and placed on frictionless, horizontal surface. A force of 40 N stretches a spring 20 cm
Sergio [31]

Answer:

a) k = 200 N/m

b) E = 4 J

c) Δx = 6.3 cm

Explanation:

a)

  • In order to find force constant of the spring, k, we can use the the Hooke's Law, which reads as follows:

       F = - k * \Delta x (1)

  • where F = 40 N and Δx =- 0.2 m (since the force opposes to the displacement from the equilibrium position, we say that it's a restoring force).
  • Solving for k:

       k =- \frac{F}{\Delta x} =-\frac{40 N}{-0.2m} = 200 N/m (2)

b)

  • Assuming no friction present, total mechanical energy mus keep constant.
  • When the spring is stretched, all the energy is elastic potential, and can be expressed as follows:

        U = \frac{1}{2}* k* (\Delta x)^{2} (3)

  • Replacing k and Δx by their values, we get:

       U = \frac{1}{2}* k* (\Delta x)^{2} = \frac{1}{2}* 200 N/m* (0.2m)^{2} = 4 J (4)

c)

  • When the object is oscillating, at any time, its energy will be part elastic potential, and part kinetic energy.
  • We know that due to the conservation of energy, this sum will be equal to the total energy that we found in b).
  • So, we can write the following expression:

        \frac{1}{2}* k* \Delta x_{1} ^{2} + \frac{1}{2} * m* v^{2}  = \frac{1}{2}*k*\Delta x^{2}   (5)

  • Replacing the right side of (5) with (4), k, m, and v by the givens, and simplifying, we can solve for Δx₁, as follows:

        \frac{1}{2}* 200N/m* \Delta x_{1} ^{2} + \frac{1}{2} * 1.8kg* (-2.0m/s)^{2}  = 4J   (6)

⇒      \frac{1}{2}* 200N/m* \Delta x_{1} ^{2}   = 4J  - 3.6 J = 0.4 J (7)

⇒     \Delta x_{1}   = \sqrt{\frac{0.8J}{200N/m} } = 6.3 cm (8)

6 0
3 years ago
Which astronomer supported the belief that earth was at the center fo the universe?
MissTica
B. Ptolemy believed that the earth was the center of the universe
4 0
3 years ago
Read 2 more answers
Would u rather/ be in avengers or x-men
vlabodo [156]
X men those mutants are amazing
6 0
3 years ago
Other questions:
  • can u guys help me with this question its really hard. The change in the velocity of an object is defined as its ________
    10·1 answer
  • Circle the author's purpose for writing this passage
    8·2 answers
  • How is a driver supposed to act?
    12·2 answers
  • A billiard ball travels 23 cm in the positive direction , hits the cushion and rebounds in the negative direction , and Finally
    8·1 answer
  • In some region of space, the electric field is given by E = Axi + By2j. Find the electric potential difference between points wh
    9·1 answer
  • 1) a) (4pts) Derive the speed of a wave on a string. b) (3 pts) If a wire is held rigidly on both ends, derive the pattern of al
    7·1 answer
  • A car starts from rest and accelerates with a constant acceleration of 5 m/s2 for 4 s. The car continues for 18 s at constant ve
    9·1 answer
  • If the social distancing length between two students is doubled from two metered to four meters, does the gravitational force be
    7·1 answer
  • ] After treatment, hospital equipment may become contaminated.
    13·1 answer
  • Determine whether each object has potential energy, kinetic energy, or both
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!