.98 Newton’s because you convert 100 g to kg which is .1 kg them you multiply.1 kg by 9.8 and get .98 and the units of the force are in Newton’s
M = 10.0 g, the mass of the iron sample
ΔT = 75 - 25.2 = 49.5°C, the decrease in temperature
c = 0.449 J/(g-°C), the specific heat of iron
The heat released is
Q = m*c*ΔT
= (10.0 g)*(0.449 J/(g-°C))*(49.5 C)
= 222.255 J
Answer: 222.3 J (nearest tenth)
I think the correct answer would be that Charles' law explains why <span>a balloon deflates when the air around it cools. Charles' law is a simplification of the ideal gas law. At constant pressure, volume and temperature have a direct relationship. Hope this helps.</span>
The density of the material would be
25/6 grams per cm^3.
to obtain the result above this is what we do:
density is calculated as: (the mass of the given material or object) / volume of the material
which leads us to 50grams /12cm^3
If its accelerating it will increase velocity in the direction of the acceleration which is perpendicular to the velocity.