Assume that the deceleration due to braking is a ft/s².
Note that
40 mph = (40/60)*88 = 58.667 ft/s
25 mph = (25/60)*88 = 36.667 ft/s
The final velocity is zero when the car stops, therefore
v² - 2ad = 0, or d = v²/(2a)
where
v = initial speed
a = deceleration
d = stopping distance.
The stopping distance, d₄₀, at 40 mph is
d₄₀ = 58.667²/(2a)
The stopping distance, d₂₅, at 25 mph is
d₂₅ = 36.667²/(2a)
Therefore
d₄₀/d₂₅ = 58.667²/(2a) ÷ 36.667²/(2a)
= (58.667/36.667)²
= 2.56
Answer:
The stopping distance at 40 mph is 2.56 times the stopping distance at 25 mph.
Kinetic energy of an object is the energy it contains due to movement. If an object is at rest, it doesn't have kinetic energy. If it's moving, then it has kinetic energy. It's pretty simple! The amount of kinetic energy of an object is dependent upon two variables, one being the mass of the object
Answer:
the the right because opposites attract to each other
Answer:variable or dependent values are represented on y axis of graph
Explanation:
Let's start by using the mirror equation:

where f=10 cm is the focal lenght of the mirror, d=38 cm is the distance of the object from the mirror, while q is the distance of the image from the mirror.
For the sign convention, f is taken as positive for a concave mirror. Therefore, we can solve the equation for q:

from which we find q=13.6 cm.
The fact that q is positive means that the image is
real, so it is on the same side of the object, with respect to the mirror.
Then we can also find the size of the image with respect to the original object. The magnification is given by

The negative sign means that the image is
inverted, and the size of the image is 0.36 times the size of the object.