Earth's atmosphere blocks many types of light including gamma, x-rays most ultraviolet and infrared. So optical telescopes that use visible light and ultraviolet telescopes that are used to study very hot stars are much less effective on Earth.
Answer: The principle of conservation of energy, angular speed and centripetal force
Explanation:
At point A, the car experienced maximum of potential energy
As it moves down the hill, the potential energy decreases while the kinetic energy increases.
The maximum kinetic energy of the car is needed for the attainment of enough centripetal force to help the car move through the loop without falling .
Answer:
<h3>
<em>2</em><em>4</em><em>7</em><em>9</em><em> </em><em>Newton</em></h3>
<em>Sol</em><em>ution</em><em>,</em>
<em>Mass</em><em>=</em><em>1</em><em>0</em><em>0</em><em> </em><em>kg</em>
<em>Accele</em><em>ration</em><em> </em><em>due</em><em> </em><em>to</em><em> </em><em>gravity</em><em>(</em><em>g</em><em>)</em><em>=</em><em>2</em><em>4</em><em>.</em><em>7</em><em>9</em><em> </em><em>m</em><em>/</em><em>s^</em><em>2</em>
<em>Now</em><em>,</em><em>.</em>
<em>
</em>
<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em>
Answer:
0.37 m
Explanation:
The angular frequency, ω, of a loaded spring is related to the period, T, by

The maximum velocity of the oscillation occurs at the equilibrium point and is given by

A is the amplitude or maximum displacement from the equilibrium.

From the the question, T = 0.58 and A = 25 cm = 0.25 m. Taking π as 3.142,

To determine the height we reached, we consider the beginning of the vertical motion as the equilibrium point with velocity, v. Since it is against gravity, acceleration of gravity is negative. At maximum height, the final velocity is 0 m/s. We use the equation

is the final velocity,
is the initial velocity (same as v above), a is acceleration of gravity and h is the height.


Answer:
Available energy = 35 x 10⁶ J
Explanation:
Given:
Amount of energy (Q) = 21 gj = 21 x 10⁹ J
Temperature T1 = 600 k
Temperature T0 = 27 + 273 = 300k
Find:
Available energy
Computation:
Available energy = Q[1/T0 - 1/T1]
Available energy = 21 x 10⁹ J[1/300 - 1/600]
Available energy = 35 x 10⁶ J