1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igomit [66]
2 years ago
5

Which is the best example of Newton's first law of motion

Physics
2 answers:
Svet_ta [14]2 years ago
4 0
Object will remain without motion unless some kind of force forces it to change. Hope this helps
Black_prince [1.1K]2 years ago
3 0
I believe the best example of Newton's First Law of motion would be the example or illustration with the basketball player. An object will move in a straight line or a given direction at a constant speed unless or until another force acts upon the object, causing a change in speed and or direction.
You might be interested in
What advantage do space telescopes have over telescopes used on earth?
Elina [12.6K]
Earth's atmosphere blocks many types of light including gamma, x-rays most ultraviolet and infrared. So optical telescopes that use visible light and ultraviolet telescopes that are used to study very hot stars are much less effective on Earth.
4 0
3 years ago
Read 2 more answers
A roller coaster car of mass m= 300 kg is released from rest at the top of a 60 m high hill (position A), and rolls with a negli
Andrews [41]

Answer: The principle of conservation of energy, angular speed and centripetal force

Explanation:

At point A, the car experienced maximum of potential energy

As it moves down the hill, the potential energy decreases while the kinetic energy increases.

The maximum kinetic energy of the car is needed for the attainment of enough centripetal force to help the car move through the loop without falling .

4 0
3 years ago
How much weight can a man lift in the jupiter if he can lift 100kg on the earth.calculate​
Nuetrik [128]

Answer:

<h3><em>2</em><em>4</em><em>7</em><em>9</em><em> </em><em>Newton</em></h3>

<em>Sol</em><em>ution</em><em>,</em>

<em>Mass</em><em>=</em><em>1</em><em>0</em><em>0</em><em> </em><em>kg</em>

<em>Accele</em><em>ration</em><em> </em><em>due</em><em> </em><em>to</em><em> </em><em>gravity</em><em>(</em><em>g</em><em>)</em><em>=</em><em>2</em><em>4</em><em>.</em><em>7</em><em>9</em><em> </em><em>m</em><em>/</em><em>s^</em><em>2</em>

<em>Now</em><em>,</em><em>.</em>

<em>weight = m \times g \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 100  \times 24.79 \\  \:  \:  \:  \:  \:  \:  = 2479 \: newton</em>

<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>.</em><em>.</em>

<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em>

5 0
3 years ago
An infant's toy has a 120 g wooden animal hanging from a spring. If pulled down gently, the animal oscillates up and down with a
Morgarella [4.7K]

Answer:

0.37 m

Explanation:

The angular frequency, ω, of a loaded spring is related to the period, T,  by

\omega = \dfrac{2\pi}{T}

The maximum velocity of the oscillation occurs at the equilibrium point and is given by

v = \omega A

A is the amplitude or maximum displacement from the equilibrium.

v = \dfrac{2\pi A}{T}

From the the question, T = 0.58 and A = 25 cm = 0.25 m. Taking π as 3.142,

v = \dfrac{2\times3.142\times0.25\text{ m}}{0.58\text{ s}} = 2.71 \text{ m/s}

To determine the height we reached, we consider the beginning of the vertical motion as the equilibrium point with velocity, v. Since it is against gravity, acceleration of gravity is negative. At maximum height, the final velocity is 0 m/s. We use the equation

v_f^2 = v_i^2+2ah

v_f is the final velocity, v_i is the initial velocity (same as v above), a is acceleration of gravity and h is the height.

h = \dfrac{v_f^2 - v_i^2}{2a}

h = \dfrac{0^2 - 2.71^2}{2\times-9.81} = 0.37 \text{ m}

3 0
3 years ago
You have a source of energy containing 21 gj of energy at 600k how much this energy can be converted to work when rejecting heat
sweet [91]

Answer:

Available energy = 35 x 10⁶ J

Explanation:

Given:

Amount of energy (Q) = 21 gj = 21 x 10⁹ J

Temperature T1 = 600 k

Temperature T0 = 27 + 273 = 300k

Find:

Available energy

Computation:

Available energy = Q[1/T0 - 1/T1]

Available energy = 21 x 10⁹ J[1/300 - 1/600]

Available energy = 35 x 10⁶ J

4 0
2 years ago
Other questions:
  • Which of these structures is/are NOT properly matched with one of its/their functions?nasopharynx: conduct air toward and from t
    6·1 answer
  • An electric motor is traversed by 3.10²º electrons in 6 seconds. Determine the intensity of the current passing through the moto
    6·1 answer
  • Scientists can measure the amounts of different elements found in the universe. Which element's concentration in the universe is
    5·1 answer
  • The pupil of the eye is the circular opening through which light enters. Its diameter can vary from about 8.00 mm to about 2.00
    8·1 answer
  • A crate is sliding down an inclined ramp at a constant speed of 0.55 m/s. The vector sum of all the forces acting on this crate
    5·1 answer
  • You and your friend Peter are putting new shingles on a roof pitched at 20°. You're sitting on the very top of the roof when Pet
    11·1 answer
  • Which part of a transverse wave is similar to a compression in a longitudinal<br> wave?
    15·1 answer
  • The gravitational field strength due to its planet is 5N/kg What does it mean?
    13·1 answer
  • What do you wish you had learned is Digital Citizenship class?
    10·1 answer
  • ¿Qué cantidad de calor absorbió una masa de 4 g de cinc al pasar de 20 °C a<br> 180 °C?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!