1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis23 [38]
3 years ago
8

When two waves meet and result in resonance, how is the resultant wave different from the original waves?

Physics
1 answer:
Nat2105 [25]3 years ago
4 0
At resonance, a standing wave is produced, and is one in which two waves superimpose to produce a wave that varies in amplitude but does not propagate, forming a single wave of one frequency, wavelength, and speed. The resultant wave has a higher amplitude. 
<span>The right answer is B) It has a greater amplitude.</span>
You might be interested in
An inexperienced researcher runs an experiment and sets his alpha level at .40 because he can't wait to get his firstsignificant
GuDViN [60]

A potential problem is that you are willing to accept a <u>5% </u>chance of being wrong if you reject the null hypothesis.

The significance level is the probability of rejecting the null hypothesis if it is true. For example, a significance level of 0.05 indicates a 5% risk of concluding that there is a difference when there is actually no difference. Rejecting the true null hypothesis results in a Type I error.

The smaller the value of α the more difficult it is to reject the null hypothesis. Therefore, choosing a low value for α can reduce the likelihood of Type I errors. The result here is that if the null hypothesis is false, it may be more difficult to reject using a lower value for α. The alpha value or statistical significance threshold is arbitrary. Which value to use depends on your field of study.

Learn more about The potential problems here:-brainly.com/question/21836542

#SPJ4

4 0
1 year ago
A 13.0 kg wheel, essentially a thin hoop with radius 1.80 m, is rotating at 469 rev/min. It must be brought to a stop in 16.0 s.
Stella [2.4K]

Answer:

Explanation:

Given

mass of wheel m=13 kg

radius of wheel=1.8 m

N=469 rev/min

\omega =\frac{2\pi \times 469}{60}=49.11 rad/s

t=16 s

Angular deceleration in 16 s

\omega =\omega _0+\alpha \cdot t

\alpha =\frac{\omega }{t}=\frac{49.11}{16}=3.069 rad/s^2

Moment of Inertia I=mr^2=13\times 1.8^2=42.12 kg-m^2

Change in kinetic energy =Work done

Change in kinetic Energy=\frac{I\omega ^2}{2}-\frac{I\omega _0^2}{2}

\Delta KE=\frac{42.12\times 49.11^2}{2}=50,792.34 J

(a)Work done =50.79 kJ

(b)Average Power

P_{avg}=\frac{E}{t}=\frac{50.792}{16}=3.174 kW

7 0
3 years ago
A tuning fork vibrating at 508 Hz falls from rest and accelerates at 9.80 m/s^2. How far below the point of release is the tunin
JulijaS [17]

Answer:

Explanation:

given,

tuning fork vibration = 508 Hz

accelerates = 9.80 m/s²

speed of sound = 343 m/s

observed frequency = 490 Hz

f_s = f(\dfrac{v}{v-(-v_s)})

f_s = f(\dfrac{v}{v+v_s})

v_s = v[\dfrac{f_s}{f_o}-1]

      = 343[\dfrac{508}{490}-1]

      v_s=12.6 m/s

distance the tunning fork has fallen

y_1=\dfrac{v^2}{2a_y}

     =\dfrac{12.6^2}{2\times 9.8}

     =8.1 m

now, time required for the observed will be

t = \dfrac{8.1}{343} = 0.023 s

now, for the distance calculation

y_2 = u\ t + \dfrac{1}{2}at^2

  = 12.6\times 0.023 +\dfrac{1}{2}\times 9.8 \times 0.023^2

  =0.293 m

total distance

 = 8.1 + 0.293 = 8.392 m

3 0
3 years ago
A ball is falling after rolling off a tall roof. The ball has
Rom4ik [11]
C.
Because it’s falling it has acceleration in the y direction. If you have acceleration, you usually also have velocity, and since kinetic energy is KE= Mv^2 you know you have it. It also has potential energy because it has some height to it, and PE= Mgh.
8 0
3 years ago
Read 2 more answers
A particle on a spring moves in simple harmonic motion along the x axis between turning points at x1 = 95 cm and x2 = 135 cm. (i
uranmaximum [27]

Answer:

(i) x = 115\,cm, (ii) x = 95\,cm, (iii) x = 95\,cm

Explanation:

(i) x_{1} and x_{2} represent the points where particle has a velocity of zero and spring reach maximum deformation, Given the absence of non-conservative force and by the Principle of Energy Conservation, the position where particle is at maximum speed is average of both extreme positions:

x = 115\,cm

(ii) Maximum accelerations is reached at x_{1} and x_{2}.

x = 95\,cm

(iii) Greatest net forces exerted on the particle are reached at  x_{1} and x_{2}.

x = 95\,cm

8 0
3 years ago
Other questions:
  • How can people control sound?
    7·2 answers
  • A monkey throws a banana peel from a height of 14 meters. It has a mass of 0.01 kilogram. What was the approximate potential ene
    8·1 answer
  • An ion of an element has 30 protons 32 neutrons and 29 electrons what is that charge and how did you make that determination
    13·2 answers
  • How coal power plants produce electrical energy to power our homes
    5·1 answer
  • A 143-g baseball is flying through the air with a speed of 180 km/hr just after it is hit by a bat. If its velocity is at an ang
    7·1 answer
  • If an object has a mass of 1 kg, what is its weight on earth
    13·1 answer
  • A student places blocks on a 100cm long see-saw as shown/
    9·1 answer
  • The density of ice can help preserve the habitats of aquatic organisms, but it can also cause the death of an organism. Which st
    13·1 answer
  • Describe the sequence of mechanical energy events that lets you hear the
    9·1 answer
  • Where in space did the expansion of the universe begin?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!