Answer:
The equilibrium value of [CO] is 1.04 M
Explanation:
Chemical equilibrium is the state to which a spontaneously evolving chemical system, in which a reversible chemical reaction takes place. When this situation is reached, it is observed that the concentrations of substances, both reagents and reaction products, they remain constant over time. That is, the rate of reaction of reagents to products is the same as that of products to reagents.
Reagent concentrations and products in equilibrium are related by the equilibrium constant Kc. Being:
aA + bB ⇔ cC + dD
![Kc=\frac{[C]^{c} *[D]^{d} }{[A]^{a} *[B]^{b} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%20%2A%5BB%5D%5E%7Bb%7D%20%7D)
Then this constant Kces equals the multiplication of the concentrations of the products raised to their stoichiometric coefficients between the multiplication of the concentrations of the reactants also raised to their stoichiometric coefficients.
In this case:
![Kc=\frac{[CH_{3}OH ]}{[CO]*[H_{2} ]^{2} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BCH_%7B3%7DOH%20%5D%7D%7B%5BCO%5D%2A%5BH_%7B2%7D%20%5D%5E%7B2%7D%20%7D)
You know:
- Kc= 14.5
- [H₂]= 0.322 M
- [CH₃OH] =1.56 M
Replacing:
![14.5=\frac{1.56}{[CO]*0.322^{2} }](https://tex.z-dn.net/?f=14.5%3D%5Cfrac%7B1.56%7D%7B%5BCO%5D%2A0.322%5E%7B2%7D%20%7D)
Solving:
![[CO]=\frac{1.56}{14.5*0.322^{2} }](https://tex.z-dn.net/?f=%5BCO%5D%3D%5Cfrac%7B1.56%7D%7B14.5%2A0.322%5E%7B2%7D%20%7D)
[CO]= 1.04 M
The equilibrium value of [CO] is 1.04 M
Answer:
It's the third option.
Explanation:
In order for the chemical equation to be correctly it needs the same number of atoms of each element on both sides of the equal sign
When a system experiences a disturbance ( such as concentration, temperature, or pressure changes), it will respond to restore a new equilibrium state.
Answer:
They are called insulators
Answer:
900 J/mol
Explanation:
Data provided:
Enthalpy of the pure liquid at 75° C = 100 J/mol
Enthalpy of the pure vapor at 75° C = 1000 J/mol
Now,
the heat of vaporization is the the change in enthalpy from the liquid state to the vapor stage.
Thus, mathematically,
The heat of vaporization at 75° C
= Enthalpy of the pure vapor at 75° C - Enthalpy of the pure liquid at 75° C
on substituting the values, we get
The heat of vaporization at 75° C = 1000 J/mol - 100 J/mol
or
The heat of vaporization at 75° C = 900 J/mol