Answer:Sources of lead emissions vary from one area to another. At the national level, major sources of lead in the air are ore and metals processing and piston-engine aircraft operating on leaded aviation fuel. Other sources are waste incinerators, utilities, and lead-acid battery manufacturers. The highest air concentrations of lead are usually found near lead smelters.
Explanation:
Answer:
Intertidal zone
Neritic zone
Open-ocean zone
Note: the correct questions are found below;
In which zone do you find marshes and mangrove forests?
In which zone are plankton plentiful, providing plenty of food for the fish that live there?
In which zone would you find very little plant or animal life compared to other zones?
Explanation:
The intertidal zone, sometimes called the littoral zone, is the area of the marine shoreline that is exposed to air at low tide, and covered with seawater when the tide is high. Intertidal zonation refers to the tendency of plants and animals to form distinct communities between the high and low tide lines. Some microclimates in the littoral zone are moderated by local features and larger plants such as mangroves.
The neritic zone is the region of shallow water (200 meters depth) above the continental shelf where light penetrates to the sea floor.
Due to the abundant supply of sunlight and nutrients such as plankton in this zone, it is the most productive ocean zone supporting the vast majority of marine life.
The open oceans or pelagic ecosystems are the areas away from the coastal boundaries and above the seabed. It encompasses the entire water column and lies beyond the edge of the continental shelf. It extends from the tropics to the polar regions and from the sea surface to the abyssal depths.
The ans should be C. ( if i'm not wrong )
This is because the solubility of oxygen increases when temperature in the water is cooler. Cold water can hold more dissolved oxygen than warm water, thus having a higher concentration of oxygen.
Hydrogen. Covalent bonds occur within each linear strand and strongly bond the bases, sugars, and phosphate groups (both within each component and between components). Hydrogen bonds occur between the two strands and involve a base from one strand with a base from the second in complementary pairing.