Answer:
this is your answer. thanks!!
Given that the function g(x)=x-3/x+4, the evaluation gives:
- g(9) = 6/13.
- g(3) = 0.
- g(-4) = undefined.
- g(-18.75) = 1.07.
- g(x+h) = x+h-3/x+h+4
<h3>How to evaluate the function?</h3>
In this exercise, you're required to determine the value of the function g at different intervals. Thus, we would substitute the given value into the function and then evaluate as follows:
When g = 9, we have:
g(x)=x-3/x+4
g(9) = 9-3/9+4
g(9) = 6/13.
When g = 3, we have:
g(x)=x-3/x+4
g(3) = 3-3/3+4
g(3) = 0/13.
g(3) = 0.
When g = -4, we have:
g(x)=x-3/x+4
g(-4) = -4-3/-4+4
g(-4) = -1/0.
g(-4) = undefined.
When g = -18.75, we have:
g(x)=x-3/x+4
g(-18.75) = -18.75-3/-18.75+4
g(-18.75) = -15.75/-14.75.
g(-18.75) = 1.07.
When g = x+h, we have:
g(x)=x-3/x+4
g(x+h) = x+h-3/x+h+4
Read more on function here: brainly.com/question/17610972
#SPJ1
Answer:
I cant see the picture
Step-by-step explanation:
Answer:

Step-by-step explanation:
The opposite angles in a quadrilateral theorem states that when a quadrilateral is inscribed in a circle, the angles that are opposite each other are supplementary, their degree measures add up to 180 degrees. One can apply this here by using the sum of (<C) and (<A) to find the measure of the parameter (z). Then one can substitute in the value of (z) to find the measure of (<B). Finally, one can use the opposite angles in a quadrilateral theorem to find the measure of angle (<D) by using the sum of (<B) and (D).
Use the opposite angles in an inscribed quadrialteral theorem,
<A + <C = 180
Substitute,
14x - 7 + 8z = 180
Simplify,
22z - 7 = 180
Inverse operations,
22z = 187
z = 
Simplify,
z = 
Now substitute the value of (z) into the expression given for the measure of angle (<B)
<B = 10z
<B = 10(
)
Simplify,
<B = 85
Use the opposite angles in an inscribed quadrilateral theorem to find the measure of (<D)
<B + <D = 180
Substitute,
85 + <D = 180
Inverse operations,
<D = 95
Answer:
Step-by-step explanation:
It is given that the distance of the nearest exit door is no more than the 200 feet. so this can be represented using an inequality.
since it is no more than 200 means the maximum it can be is 200 feet .
Now we are representing the distance using the variable d and we have established that the maximum value of d can be 200 so it can represented
by this inequality
