Answer:
B. how fast the particles are moving
Explanation:
Temperature measures the average kinetic energy of system as result of the thermal - heat energy present in the reaction or a body.
Often times, temperature is the degree of hotness or coldness of a body and this translates to an increase or decrease in the molecular speed.
- Number of particles in a body is the mass of the body.
- How tightly packed the particles are corresponds to the density of the body.
Answer: The answer is S = 0.1528 cal/g °C
Explanation:
By the law of conservation of energy, energy is neither created nor destroyed.
So, energy lost by metal pieces is equal to the energy gained by water in the calorimeter.
Specific heat of water is 1 cal/g °C
⇒ heat energy Q = mSΔT, where m = mass of a substance
S = specific heat
ΔT = change in temperature
Now, the heat lost by metal piece, Q = 72×S×(96-31)
= 4680×S cal
Heat gained by water, Q = 130×1×(31-25.5)
= 715 cal
⇒ 4680×S = 715.
⇒ S = 0.1528 cal/g °C.
Answer:
A compound is a substance which contains two or more elements chemically combined together.
A compound is formed as a result of a chemical change.
Explanation:
Answer:
The heat of vaporisation of methanol is "3.48 KJ/Mol"
Explanation:
The amount of heat energy required to convert or transform 1 gram of liquid to vapour is called heat of vaporisation
When 8.7 KJ of heat energy is required to vaporize 2.5 mol of liquid methanol.
Hence, for 1 mol of liquid methanol, amount of heat energy required to evaporate the methanol is = 
= 3.48 KJ
So, the heat of vaporization 
Therefore, the heat of vaporization of methanol is 3.48KJ/Mol