A. Thermal energy good job
Answer:
0.1357 M
Explanation:
(a) The balanced reaction is shown below as:

(b) Moles of
can be calculated as:
Or,
Given :
For
:
Molarity = 0.1450 M
Volume = 10.00 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 10×10⁻³ L
Thus, moles of
:
Moles of
= 0.00145 moles
From the reaction,
1 mole of
react with 2 moles of NaOH
0.00145 mole of
react with 2*0.00145 mole of NaOH
Moles of NaOH = 0.0029 moles
Volume = 21.37 mL = 21.37×10⁻³ L
Molarity = Moles / Volume = 0.0029 / 21.37×10⁻³ M = 0.1357 M
Answer: 1. 0.045moles
2. 2.10 grams
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:
1. 
2. Mass of 
Answer:
<u><em></em></u>
- <u><em>C) How much energy was added to the substance to increase molecule motion? </em></u>
Explanation:
<em>The most relevant question to ask regarding this change</em> must take into account the physical knowledge about matter.
When matter changes from<em> liquid </em>state to <em>gaseous</em> state, a physical change called evaporation, the particles (molecules or atoms) of the <em>pure substance </em>will separate from each other, take up more space and move faster.
<em>Condensation</em> is the opposite to evaporation, thus the option A) is not the most relevant question.
<em>The charge of the particles</em> does not change; so the option B) is not relevant at all.
The particles should gain energy from the surroundings to <em>increase</em> their <em>motion</em> (kinetic energy) when they pass from liquid state, where they move slower, to gas state, where they move faster. Hence, the option<em> C), How much energy was added to the substance to increase molecule motion?</em> , is totally relevant.
Since this is an increase in the <em>kinetic energy of the molecules</em>, the option D) is not relevant.
Answer:
can oxygen exist as a liquid and solid