The researcher may first weight the beaker with water and then start to heat the water to a constant temperature, for example 30 °C and then start adding salt and stirring. He should add salt slowly until solid salt starts to become visible and the solution starts becoming cloudy. When this happens, he should quickly weigh the beaker. The increase in mass is the mass of salt dissolved at that temperature.
The procedure is then repeated but at an increased temperature until 5-6 temperatures have been tested.
The elements in Groups 1A(1) and 7A(17) are all quite reactive.
<h3>Major difference between Groups 1A(1) and 7A(17) : </h3>
Group 7's halogens, which are non-metal elements, become less reactive as you move down the group. In contrast to the alkali metals in Group 1 of the periodic table, this trend is the opposite. The most reactive element in Group 7 is fluorine.
Alkali metals are soft and reactive metals. They react vigorously with water and become more reactive. And other hand halogens are reactive non metals.
- Elements of group 1A are known as alkali metals. Elements of this group are lithium, sodium, potassium, rubidium, cesium.
- Reactivity increase down group 1 but decrease up group 7 this is because group 7 elements react by gaining an electron. As one move down the group, the amount of electron shielding increases, meaning that the electron is less attracted to the nucleus.
To know more about Groups 1A(1) and 7A(17) please click here :
brainly.com/question/13063502
#SPJ4
Answer:
The answer to your question is C₂HO₃
Explanation:
Data
Hydrogen = 3.25%
Carbon = 19.36%
Oxygen = 77.39%
Process
1.- Write the percent as grams
Hydrogen = 3.25 g
Carbon = 19.36 g
Oxygen = 77.39 g
2.- Convert the grams to moles
1 g of H ----------------- 1 mol
3,25 g of H ------------- x
x = (3.25 x 1) / 1
x = 3.25 moles
12 g of C ---------------- 1 mol
19.36 g of C ---------- x
x = (19.36 x 1) / 12
x = 1.61 moles
16g of O --------------- 1 mol
77.39 g of O --------- x
x = (77.39 x 1)/16
x = 4.83
3.- Divide by the lowest number of moles
Carbon = 3.25/1.61 = 2
Hydrogen = 1.61/1.61 = 1
Oxygen = 4.83/1.61 = 3
4.- Write the empirical formula
C₂HO₃
Special Structures in Plant Cells. Most organelles are common to both animal and plant cells. However, plant cells also have features that animal cells do not have: a cell wall, a large central vacuole, and plastids such as chloroplasts.
H2O+Fe⇒Fe2O3+H2
When it is balanced it would be:
3H2O+2Fe⇒Fe2O3+3H2
When balancing equations, you have to make sure that all elements are equal on each side.