Answer:
ΔX = λ = 0.68 m
Explanation:
Wave speed is related to wavelength and frequency by the equation
v = λ f
where the speed of sound is 340 m / s
λ = v / f
λ = 340/500
λ = 0.68 m
this is the wavelength, it is the minimum distance for which the wave epitates its movement, which is equal to the distance between two consecutive compressions of the sound
ΔX = λ = 0.68 m
Answer:
I₁ > I₃ > I₂
Explanation:
Taking the pic shown, we have
m₁ = 10m₀
m₂ = 2m₀
m₃ = m₀
r₁ = r₀
r₂ = 2r₀
r₃ = 3r₀
We apply the formula
I = mr²
then
I₁ = m₁r₁² = (10m₀)(r₀)² = 10m₀r₀²
I₂ = m₂r₂² = (2m₀)(2r₀)² = 8m₀r₀²
I₃ = m₃r₃² = (m₀)(3r₀)² = 9m₀r₀²
finally we have
I₁ > I₃ > I₂
(3) The frictional force exerted by the floor on the box
Answer:
Diffraction of sound wavelengths.
Explanation:
-A wave is able to bend around a corner due to the effects of diffraction. sound aves are capable of bending around corners in the same magnitude as it's wavelength making it possible to hear sounds around corners.
Newton's second law states that the resultant of the forces applied to an object is equal to the product between the object's mass and its acceleration:

where in our problem, m is the mass the (child+cart) and a is the acceleration of the system.
We are only concerned about what it happens on the horizontal axis, so there are two forces acting on the cart+child system: the force F of the man pushing it, and the frictional force

acting in the opposite direction. So Newton's second law can be rewritten as

or

since the frictional force is 15 N and we want to achieve an acceleration of

, we can substitute these values to find what is the force the man needs: