Answer : The specific heat of the metal is, 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of metal = ?
= specific heat of water = 
= mass of metal = 97 g
= mass of water = 122 g
= final temperature of mixture = 
= initial temperature of metal = 
= initial temperature of water = 
Now put all the given values in the above formula, we get


Therefore, the specific heat of the metal is, 
Answer:
c.boron-11
Explanation:
The atomic mass of boron is 10.81 u.
And 10.81 u is a lot closer to 11u than it is to 10u, so there must be more of boron-11.
To convince you fully, we can also do a simple calculation to find the exact proportion of boron-11 using the following formula:
(10u)(x)+(11u)(1−x)100%=10.81u
Where u is the unit for atomic mass and x is the proportion of boron-10 out of the total boron abundance which is 100%.
Solving for x we get:
11u−ux=10.81u
0.19u=ux
x=0.19
1−x=0.81
And thus the abundance of boron-11 is roughly 81%.
Initial volume of the balloon =
= 348 mL
Initial temperature of the balloon
= 
Final volume of the balloon
= 322 mL
Final temperature of the balloon = 
According to Charles law, volume of an ideal gas is directly proportional to the temperature at constant pressure.

On plugging in the values,


Therefore, the temperature of the freezer is 276 K
You would have to dig up 261 g of sylvanite.
Mass of sylvanite = 73.0 g Au × (100 g sylvanite/28.0 g Au) = <em>261 g</em> sylvanite.
Answer:
A mole (mol) is the amount of a substance that contains 6.02 × 10 23 representative particles of that substance. The mole is the SI unit for the amount of a substance. There are, therefore, 6.02 × 10 23 water molecules in a mole of water molecules. Water (H2O) is made from 2 atoms of hydrogen and 1 atom of oxygen.