Using Gay-Lussac's Law, pressure is proportional to (absolute) temperature in Kelvin. We first convert the temperature values to Kelvin: 110 C = 383.15 K, while 65 C = 338.15 K.
P1/T1 = P2/T2
22.5/383.15 = P2/338.15
P2 = 19.9 psi
The new volume : 21.85 ml
<h3>Further explanation</h3>
Given
V1=25,0 ml
P1=725 mmHg
T1=298K is converted to
T2=273'K
P2=760 mmHg atm
Required
V2
Solution
Combined gas law :

Input the value :
V2=(P1.V1.T2)/(P2.T1)
V2=(725 x 25 ml x 273)/(760 x 298)
V2=21.85 ml
Ionization energy (IE) is the amount of energy required to remove an electron.
If you observe the IEs sequentially, there is a large gap between the 2nd and 3rd. This suggests it is difficult to remove more than 2 two electrons. Elements that lose two electrons to become more stable are found in the Group 2A (2 representing the number of electrons in the outermost valence shell).
I think the mineral characteristics that the one gram sample of hematite taking up more space than a one gram sample of malachite is DENSITY.
The density of hematite is 5.26 g/cm³
The density of malachite is 3.6 to 4 g/cm³
Other physical characteristics of minerals are <span><span>Color, </span>Streak, Luster, H<span>ardness, </span>Cleavage, Fracture, Tenacity, and Crystal <span>Habit.</span></span>
The mass fraction of sodium chloride is 0.0625
<h3>What is the mass fraction of sodium chloride in the solution?</h3>
The mass fraction of sodium chloride is the ratio of the mass of sodium chloride to the total mass of the solution.
The mass fraction of sodium chloride is determined as follows;
mass of sodium chloride = 20 g
- mass of water = volume * density
density of water = 1 g/mL
volume of water = 300 mL
mass of water = 300 mL * 1 g/mL
mass of water = 300 g
total mass of solution = 20 + 300 = 320 g
mass fraction of sodium chloride = 20/320
mass fraction of sodium chloride = 0.0625
Learn more about mass fraction at: brainly.com/question/14783710
#SPJ1