Answer:
(3 and 15)
Step-by-step explanation:
If the product of both of these two numbers needs to be a negative 45 then there are no pair of integers that comply with both requirements.
If the multiplication in the question is wrong and it is a positive 45 then the pair of integers that would comply with these requirements would be (3 and 15). Multiplying this pair together would give you 45 and the difference between them is also 12 meaning it complies with both requirements that were asked for in the question.
Answer:
(a) false
(b) true
(c) true
(d) true
(e) false
(f) true
(g) false
(h) true
(i) true
Step-by-step explanation:
(a) 15 ⊂ A, since 15 is not a set, but an element, we cannot say of an element to be subset of a set. False
(b) {15} ⊂ A The subset {15} is a subset of A, since every element of {15}, that is 15, belongs to A.
15 ∈ {15} and 15 ∈ { x ∈ Z: x is an integer multiple of 3 } 15 is an integer multiple of 3. since 15/3=5. True
(c)∅ ⊂ A
∅ is a subset of any set. True
(d) A ⊆ A
A is a subset of itself. True
(e)∅ ∈ B
∅ is not an element, it is a subset, so it does not belong to any set. False
(f)A is an infinite set.
Yes, there are infinite integers multiple of 3. True
(g)B is a finite set.
No, there are infinite integers that are perfect squares. False
(h)|E| = 3
The number of elements that belong to E are 3. True
(i)|E| = |F|
The number of elements that belong to F are 3. So is the number of elements of E. True
Answer:
False
False
True
False
True
Step-by-step explanation:
I hope this helps!