Answer and explanation:
cyclopentadiene is more acidic than cyclopentane
hydrocarbon compound are weak acid in nature
This relative acidity is explained by the stability of
cyclopentadienyl anion which is aromatic in nature
(check the attached image file 1)
To answer this question we must look at the stability of the anions that are formed when the compound lose proton.
All the electron in the cyclopentyl anion are localized.
In contrast, the aromatic cyclopentadienyl anion is a stable carbanion as a result of its aromaticity therefore making its conjugate acid a very strong acid compare to other compounds with hydrogen attached to sp³ carbons
Answer:
The frequency of the electromagnetic wave is 7.22891566 × 10¹⁴ Hz
Explanation:
The wavelength of the electromagnetic wave, λ = 415 nm
The speed of an electromagnetic wave, c ≈ 3.0 × 10⁸ m/s
Given that an electromagnetic wave is a periodic wave, we have;
The speed of the electromagnetic wave, c = f×λ
Where;
f = The frequency of the electromagnetic wave
Therefore, we have;
f = c/λ
From which we have;
f = (3.0 × 10⁸ m/s)/(415 nm) = 7.22891566 × 10¹⁴ /s = 7.22891566 × 10¹⁴ Hz
The frequency of the electromagnetic wave, f = 7.22891566 × 10¹⁴ Hz
Answer:
This is a pretty straightforward example of how an ideal gas law problem looks like.
Your strategy here will be to use the ideal gas law to find the pressure of the gas, but not before making sure that the units given to you match those used by the universal gas constant.
So, the ideal gas law equation looks like this
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
P
V
=
n
R
T
a
a
∣
∣
−−−−−−−−−−−−−−−
Here you have
P
- the pressure of the gas
V
- the volume it occupies
n
- the number of moles of gas
R
- the universal gas constant, usually given as
0.0821
atm
⋅
L
mol
⋅
K
T
- the absolute temperature of the gas
Take a look at the units given to you for the volume and temperature of the gas and compare them with the ones used in the expression of
R
.
a
a
a
a
a
a
a
a
a
a
a
Need
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
Have
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
Liters, L
a
a
a
a
a
a
a
a
a
a
a
a
a
Liters, L
a
a
a
a
a
a
a
a
a
a
a
√
a
a
a
a
a
a
a
Kelvin, K
a
a
a
a
a
a
a
a
a
a
a
a
Celsius,
∘
C
a
a
a
a
a
a
a
a
a
×
Notice that the temperature of the gas must be expressed in Kelvin in order to work, so make sure that you convert it before plugging it into the ideal gas law equation
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
T
[
K
]
=
t
[
∘
C
]
+
273.15
a
a
∣
∣
−−−−−−−−−−−−−−−−−−−−−−−−
Rearrange the ideal gas law equation to solve for
P
P
V
=
n
R
T
⇒
P
=
n
R
T
V
Plug in your values to find
P
=
0.325
moles
⋅
0.0821
atm
⋅
L
mol
⋅
K
⋅
(
35
+
273.15
)
K
4.08
L
P
=
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
2.0 atm
a
a
∣
∣
−−−−−−−−−−−
The answer is rounded to two sig figs, the number of sig figs you have for the temperature of the gas.
The rules of writing name is that they start with a big letter LIKE this and ends like this