Answer:
The value of the equilibrium constant Kc is 5.45
Explanation:
The "Law of Mass Action" states:
"For a reversible reaction in chemical equilibrium at a given temperature, it is true that the product of the concentrations of the products raised to the stoichiometric coefficients divided by the product of the concentrations of the reactants raised to their stoichiometric coefficients is a constant."
This constant was called the equilibrium constant. For a reaction:
aA + bB ⇄ cC + dD
the equilibrium constant Kc is:
![Kc=\frac{[C]^{c} *[D]^{d} }{[A]^{a} *[B]^{b} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%20%2A%5BB%5D%5E%7Bb%7D%20%7D)
In this case, the balanced reaction is:
2 H₂S → 2 H₂ + S₂
So, the equilibrium constant Kc is:
![Kc=\frac{[H_{2} ]^{2} *[S_{2} ] }{[H_{2} S]^{2} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BH_%7B2%7D%20%5D%5E%7B2%7D%20%2A%5BS_%7B2%7D%20%5D%20%7D%7B%5BH_%7B2%7D%20S%5D%5E%7B2%7D%20%20%7D)
The equilibrium concentrations are
- [H₂S] =0.25 M
- [H₂]= 0.88 M
- [S₂]= 0.44M
Replacing in the definition of equilibrium constant:

Solving:
Kc= 5.45
<u><em>The value of the equilibrium constant Kc is 5.45</em></u>
<u><em></em></u>
Answer:
the answer would be A have good day
Explanation:
pls mark brainliest and 5 stars
<3
Answer:
Respiration might occur in the presence and absence of oxygen known as the aerobic respiration and anaerobic respiration. The ATP molecules are produced more in number in aerobic respiration.
The yeast has the ability to undergo the process of anaerobic respiration and its end product are alcohol, carbon dioxide and 2 moles of ATP. The yeast is grown on maltose medium but unable to produce alcohol because of the presence of oxygen in the medium. The oxygen might acts as poison or inhibit the process of anaerobic respiration.
Answer:
CO32−
Explanation:
We have to consider the valencies of the polyatomic ions involved. Recall that it is only a polyatomic ion with a valency of -2 that can form a compound which requires two sodium ions.
When we look closely at the options, we will realize that among all the options, only CO32− has a valency of -2, hence it must be the required answer. In order to be double sure, we put down the ionic reaction equation as follows;
2Na^+(aq) + CO3^2-(aq) ---------> Na2CO3(aq)