Answer:
- The size of a force
- The perpendicular distance from the pivot the line of action of force
Explanation:
Factors that affect the moment of a force are;
- The size of a force
- The perpendicular distance from the pivot the line of action of force
The magnitude of force applied is directly proportional to the moment of force in that for a perpendicular distance d, increased in force applied will result to a higher moment of force. When the perpendicular distance from the pivot is decreased while the force applied remains constant, the moment of force decreases.

Given ,
initial velocity , u = 20 m/s
final velocity , v = 60 m/s
time taken = 2 seconds
Now ,

hope helpful~
"v0" means that there are no friction forces at that speed
<span>mgsinΘ = (mv0²/r)cosΘ → the variable m cancels </span>
<span>sinΘ/cosΘ = tanΘ = v0² / gr
</span><span>Θ = arctan(v0² / gr) </span>
<span>When v > v0, friction points downslope: </span>
<span>mgsinΘ + µ(mgcosΘ + (mv²/r)sinΘ) = (mv²/r)cosΘ → m cancels: </span>
<span>gsinΘ + µ(gcosΘ + (v²/r)sinΘ) = (v²/r)cosΘ </span>
<span>µ = ((v²/r)cosΘ - gsinΘ) / (gcosΘ + (v²/r)sinΘ) </span>
<span>where Θ is defined above. </span>
<span>When v > v0, friction points upslope: </span>
<span>mgsinΘ - µ(mgcosΘ + (mv²/r)sinΘ) = (mv²/r)cosΘ → m cancels: </span>
<span>gsinΘ - µ(gcosΘ + (v²/r)sinΘ) = (v²/r)cosΘ </span>
<span>µ = (gsinΘ - (v²/r)cosΘ) / (gcosΘ + (v²/r)sinΘ) </span>
<span>where Θ is defined above. </span>
Answer:
C) 6 m/s
Explanation:
Given that
m₁=5000 kg
The initial velocity of 5000 kg car =u₁
m₂=10,000 kg
The initial velocity of 10000 kg car =u₂ = 0 m/s
After collision the final speed of the both car,v = 2 m/s
There is no any external force on the system that is why linear momentum will be conserved.
Linear momentum P = m v
m₁u₁ + m₂u₂ = (m₂ + m₁) v
5000 x u₁ + 10000 x 0 = (5000 + 10000) x 2
5000 x u₁ = 15000 x 2
5 x u₁ = 15 x 2
u₁ = 6 m/s
Therefore the answer is C.
C) 6 m/s
Answer:
a)54L/min
b)0.845
Explanation:
a) A x V=
where suffix 1,2,3 refers to the three pipes.
=27L/min+16L/min+11 L/min
=54L/min
b) A x V=54L/min =>
x v
d= 2 cm
x v = 54
v=
x
->
x
=27L/min =>
x 
= 1.3cm
x
= 27
=
x 
Next is to find the ratio of speed i.e 
x
/
x
=>

= 0.845