Distance traveled by him = circumference of that circular path = 2πr = 2π(3.5)
= 7π = 7×3.14 = 21.98 m
time = 8.9 s [ Given ]
Now, Average speed = distance / time
s = 21.98 / 8.9
s = 2.46 m/s
Hope this helps!
This question is incomplete the complete question is
A diver bounces straight up from a diving board, avoiding the diving board on the way down, and falls feet first into a pool. She starts with a velocity of 4.00 m/s and her takeoff point is 1.80 m above the pool. (a) What is her highest point above the board? (b) How long a time are her feet in the air? (c) What is her velocity when her feet hit the water?
Answer:
(a) Xs=0.459m
(b) t=0.984 s
(c) Vc=6.65 m/s
Explanation:
(a) To reach maximum distance

(b) For Time
To find t we must find t1 and t2
as
t=t1+t2
For T1

For T2

For Total Time
t=t1+t2
t=0.306+0.6789
t=0.984s
(c) To find Vc
Vc=Vb+gt2
Vc=(0)+(9.8)(0.6789)
Vc=6.65 m/s
The linear speed of the ladybug is 4.1 m/s
Explanation:
First of all, we need to find the angular speed of the lady bug. This is given by:

where
T is the period of revolution
The period of revolution is the time taken by the ladybug to complete one revolution: in this case, since it does 1 revolution every second, the period is 1 second:
T = 1 s
Therefore, the angular speed is

Now we can find the linear speed of the ladybug, which is given by

where:
is the angular speed
r = 65.0 cm = 0.65 m is the distance of the ladybug from the axis of rotation
Substituting, we find

Learn more about angular speed:
brainly.com/question/9575487
brainly.com/question/9329700
brainly.com/question/2506028
#LearnwithBrainly
The visible spectrum ranges from 390 nm to 700 nm. the visible spectrum consist of the red ( 620 - 750 nm ) , orange ( 590 - 620 nm ) , yellow ( 570 - 590 nm ) , green ( 495 - 570 nm ) , blue ( 450 - 495 nm ) and violet ( 380 - 450 nm ) so the wave length 449 nm will produce a violet color
The highest point of a wave is called the crest. Among the choices, the correct answer is C. The height of the wave can be determined using the crest and the trough. The trough is the lowest point of a wave. The wavelength is the distance between two crests of a wave.