Plasmolysis is the reason. The reason that the Elodea cell prevents from collapsing completely is that the Plasmolysis is the main reason because it always has water to keep it full. The answer in this question is Plasmolysis is the reason because it always has water to keep it full.
Hi cupcake :wink: i'm jk
the answer is b.) metaphase
The total amount that was spent on Veterans’ Benefits is 233.78 billion U.S. dollars.
<h3>
What was the total amount spent on Veterans’ Benefits?</h3>
Spending for the disability program is increased about quadrupled from $22 billion in 2000 to $85 billion in 2019. The spending on Veterans’ Benefits is 233.78 billion U.S. dollars.
So we can conclude that The total amount that was spent on Veterans’ Benefits is 233.78 billion U.S. dollars.
Learn more about Veterans here: brainly.com/question/16622195
#SPJ1
Answer:
Microscopically, a single crystal has atoms in a near-perfect periodic arrangement; a polycrystal is composed of many microscopic crystals (called "crystallites" or "grains"), and an amorphous solid (such as glass) has no periodic arrangement even microscopically.
Most inorganic solids are not crystals but polycrystals, i.e. many microscopic crystals fused together into a single solid. ... The third category of solids is amorphous solids, where the atoms have no periodic structure whatsoever. Examples of amorphous solids include glass, wax, and many plastics.
In condensed matter physics and materials science, an amorphous (from the Greek a, without, morphé, shape, form) or non-crystalline solid is a solid that lacks the long-range order that is characteristic of a crystal. In some older books, the term has been used synonymously with glass.
Explanation:
This chapter highlights mesocrystals as an interesting example of particle‐mediated, non‐classical crystallization processes. Mesocrystals — the shortened name for mesoscopically structured crystals — are superstructures composed of nanoparticles, being arranged three‐dimensionally in crystallographic register. Mesocrystals are often only intermediate structures in a non‐classical crystallization pathway leading to a final single crystal by nanoparticle fusion. Therefore, they are difficult to detect. Although mesocrystals were initially described for synthetic systems, recent investigations have revealed an increasing number of bio‐mineral systems which appear to be mesocrystals, but which so far have been considered to be single crystalline, including nacre and sea urchin spines. This chapter briefly defines non‐classical crystallization processes, provides some examples of synthetic mesocrystals and mesocrystals in biomineralization, and attempts to provide some insight into their formation mechanisms, despite their being as yet largely unexplored.