To summarize, an object moving in uniform circular motion is moving around the perimeter of the circle with a constant speed<span>. While the </span>speed<span> of the object is</span>constant<span>, its </span>velocity<span> is </span>changing<span>. </span>Velocity<span>, being a vector, has a </span>constant<span>magnitude </span>but<span> a </span>changing<span> direction.</span>
Answer:
1340.2MW
Explanation:
Hi!
To solve this problem follow the steps below!
1 finds the maximum maximum power, using the hydraulic power equation which is the product of the flow rate by height by the specific weight of fluid
W=αhQ
α=specific weight for water =9.81KN/m^3
h=height=220m
Q=flow=690m^3/s
W=(690)(220)(9.81)=1489158Kw=1489.16MW
2. Taking into account that the generator has a 90% efficiency, Find the real power by multiplying the ideal power by the efficiency of the electric generator
Wr=(0.9)(1489.16MW)=1340.2MW
the maximum possible electric power output is 1340.2MW
Air pressure decreases as altitude increases. this is because air pressure is caused by the gravity of earth, the gravity pulls on the air, compacting it and making a pressure.
But as we go higher, gravity decreases, causing less pull on the air resulting in less air pressure.<span />
Gravity lets all objects fall to the ground at the same speed, 9.8 m/s/s. If the force of gravity were stronger, such as 10 m/s/s, the rate of acceleration would be faster.
The length of the inclined plane is approximately 12 ft
The situation forms a right angle triangle.
<h3>Right triangle</h3>
Right triangle have one of its angle as 90 degrees.
Therefore,
The length of the inclined plane is the hypotenuse of the triangle. The length of the inclined plane can be found using trigonometric ratios.
height = 4 ft
angle(∅) = 19.45°
sin 19.45 = 4 / h
h = 4 / 0.33298412235
h = 12.0125847796
h = 12 ft
Therefore, the length of the inclined plane is approximately 12 ft
learn more on inclined plane:brainly.com/question/14163589?referrer=searchResults