Voltage is the difference in charge between two points.
Current is the rate the charge flows
Resistance is the tendency a material has to resist the flow of charge (current)
Combining voltage resistance and current Ohm developed the formula
V (Voltage)= I (Current) x R (Resistance)
Answer:
C = 771.35 J/kg°C
Explanation:
Here, e consider the conservation of energy equation. The conservation of energy principle states that:
Heat Given by Metal Piece = Heat Absorbed by Water + Heat Absorbed by Container
Since,
Heat Given or Absorbed by a material = m C ΔT
Therefore,
m₁CΔT₁ = m₂CΔT₂ + m₃C₃ΔT₃
where,
m₁ = Mass of Metal Piece = 2.3 kg
C = Specific Heat of Metal = ?
ΔT₁ = Change in temperature of metal piece = 165°C - 18°C = 147°C
m₂ = Mass of Metal Container = 3.8 kg
ΔT₂ = Change in temperature of metal piece = 18°C - 15°C = 3°C
m₃ = Mass of Water = 20 kg
C₃ = Specific Heat of Water = 4200 J/kg°C
ΔT₃ = Change in temperature of water = 18°C - 15°C = 3°C
Therefore,
(2.3 kg)(C)(147°C) = (3.8 kg)(C)(3°C) + (20 kg)(4186 J/kg°C)(3°C)
C[(2.3 kg)(147°C) - (3.8 kg)(3°C)] = 252000 J
C = 252000 J/326.7 kg°C
<u>C = 771.35 J/kg°C</u>
Most radiation exposure comes from natural sources. These so-called "natural sources" include Radon, Internal, Terrestrial, and Cosmic. Among that, Radon proves to be the largest source of radiation. Radon is a naturally occurring radioactive gas that comes from the breakdown of uranium.
Answer:
The radius of the new planet is ~2.04 * 10⁶ m, or 2,041,752 m.
Explanation:
We can use Newton's Law of Universal Gravitation:
Let's look at Newton's 2nd Law:
We can set these equations equal to each other:
The mass of the second mass (astronaut) cancels out. We are left with:
We are solving for the radius of the new planet, so we can rearrange the equation:
Substitute in our known values given in the problem (<u><em>G = 6.67 * 10⁻¹¹ </em></u><em> ; </em><u><em>M = 7.5 * 10²³</em></u><em> ; </em><u><em>a = 12</em></u>).
The radius of the new planet is ~2.04 * 10⁶ m.