The answer is 4.0 kg since the flywheel comes to rest the
kinetic energy of the wheel in motion is spent doing the work. Using the
formula KE = (1/2) I w².
Given the following:
I = the moment of inertia about the
axis passing through the center of the wheel; w = angular velocity ; for the
solid disk as I = mr² / 2 so KE = (1/4) mr²w². Now initially, the wheel is spinning
at 500 rpm so w = 500 * (2*pi / 60) rad / sec = 52.36 rad / sec.
The radius = 1.2 m and KE = 3900 J
3900 J = (1/4) m (1.2)² (52.36)²
m = 3900 J / (0.25) (1.2)² (52.36)²
m = 3.95151 ≈ 4.00 kg
Answer:
the magnitude of the velocity of the block just after impact is 2.598 m/s and the original speed of the bullect is 324.76m/s.
Explanation:
a) Kinetic energy of block = potential energy in spring
½ mv² = ½ kx²
Here m stands for combined mass (block + bullet),
which is just 1 kg. Spring constant k is unknown, but you can find it from given data:
k = 0.75 N / 0.25 cm
= 3 N/cm, or 300 N/m.
From the energy equation above, solve for v,
v = v √(k/m)
= 0.15 √(300/1)
= 2.598 m/s.
b) Momentum before impact = momentum after impact.
Since m = 1 kg,
v = 2.598 m/s,
p = 2.598 kg m/s.
This is the same momentum carried by bullet as it strikes the block. Therefore, if u is bullet speed,
u = 2.598 kg m/s / 8 × 10⁻³ kg
= 324.76 m/s.
Hence, the magnitude of the velocity of the block just after impact is 2.598 m/s and the original speed of the bullect is 324.76m/s.
F=ma
a=F/m=300/25=12 m/s^2
hey guy
the vibration per second is frequency
then for 20 vibration time taken is 100 second
in 1 second 20/100 vibration took place
it means 0.2 is frequency
for time period , we have
t=1/f
=1/0.2
=5