Answer:
THE HEAT NEEDED TO CHANGE 3KG OF WATER FROM 10 C TO 80 C IS 877.8kJ OR 877,800 J.
Explanation:
Mass = 3.0 kg = 3 * 1000 = 3000 g
Initial temperature = 10 C
Final temperature = 80 C
Change in temperature = 80 - 10 = 70 C
Specific heat of water = 4.18 J/g C
Heat needed = unknown
Heat is the amount of energy in joules needed to change a gram of water by 1 C.
Heat = mass * specific heat * change in temperature
Heat = 3000 g * 4.18 J/g C * 70 C
Heat = 877 800 Joules
Heat = 877.8 kJ.
The heat needed to change 3 kg mass of water from 10 C to 80 C is 877,800 J or 877.8 kJ.
Hello.
<span>It makes a longitudinal wave because it stretches and compresses while as it slithers foward.
</span>
Have a nice day
Answer:
The equilibrium expression is:
CoC2O4(s)⇌Co2+(aq)+C2O2−4(aq)
For this reaction:
Ksp = [Co2+][C2O2−4]=1.96×10−8
Explanation:
Batteries will not clot if cobalt ions are removed from its cells. Some blood collection tubes contain salts of the oxalate ion,
C2O2−4
, for this purpose. At sufficiently high concentrations, the calcium
and oxalate ions form solid, CoC2O4·H2O (which also contains water bound in the solid). The concentration of Co2+ in a sample of blood serum is 2.2 × 10–3M. What concentration of
C2O2−4
ion must be established before CoC2O4·H2O begins to precipitate.
CoC2O4 does not appear in this expression because it is a solid. Water does not appear because it is the solvent.
Solid CoC2O4 does not begin to form until Q equals Ksp. Because we know Ksp and [Co2+], we can solve for the concentration of
C2O2−4
that is necessary to produce the first trace of solid:
The primary form of heat transfer taking place within the water bottle will be convection, which is the natural circulation of fluid due to density differences arising from temperature differences.
The second form is dependent on how the heating is taking place. If the bottle is out in sunlight, the form of heat transfer is radiation from the sun's rays. If heat is directly being applied to it, then the form is conduction, which occurs in solids and through direct contact.