Phosphorus would be your element
From the calculations performed, the free energy change for the reaction is 72 kJ/mol.
<h3>What is the equilibrium constant?</h3>
The equilibrium constant is a value that shows the extent to which reactants have been converted to products.
Given that the equation of the reaction is;
3CH4(g)→C3H8(g)+2H2(g)
Then;
PC3H8 = 0.013 atm
PH2 = 2.3×10−2 atm
PCH4 = 41 atm
Now;
ΔG = ΔG° + RTlnQ
ΔG°reaction = ΔG°products - ΔG°reactants
ΔG°reaction = [( -23.4) +2(0)] - 3(-50.8)
ΔG°reaction = 129 kJ/mol
Q = PC3H8 * PH2^2/PCH4^3
Q = 0.013 * (2.3×10−2)^2/( 41)^3
Q = 6.877 * 10^-6/68921
Q= 9.9* 10^-11
Hence;
ΔG = 129 * 10^3 + [8.314 * 298 * (ln 9.9* 10^-11 )]
ΔG = 129 * 10^3 - 57073
ΔG = 72 kJ/mol
Learn more about free energy change: brainly.com/question/14143095
You forgot to attach the question…
The resulting pressure of the gas after decreasing the initial volume from 2 L to 1 L is 3 atm.
<h3>What is
Boyle's Law?</h3>
According to the Boyle's Law at constant temperature, pressure of the gas is inversely proportional to the volume of that gas.
For the given question we use the below equation is:
P₁V₁ = P₂V₂, where
P₁ = initial pressure of gas = 1.5 atm
V₁ = initial volume of gas = 2 L
P₂ = final pressure of gas = ?
V₂ = final volume of gas = 1 L
On putting all these values on the above equation, we get
P₂ = (1.5atm)(2L) / (1L) = 3 atm
Hence required pressure of the gas is 3 atm.
To know more about Boyle's Law, visit the below link:
brainly.com/question/469270