The answer is <span>ionic aluminum fluoride (</span>AlF3). Note that boiling points of pure solvents are raised in the presence of solutes. The type of solute also affects the boiling point elevation of the solution. Ionic substances tend to raise it more than covalent ones, so sucrose is out of the picture. Next, consider the number of ions the ionic substance produces. The more ions, the greater the BPE. AlF3 dissociates into 4 ions.
Answer:
124.56 moles of Hydrogen atoms.
Explanation:
We'll begin by calculating the number of moles of ethane that contains 1.25×10²⁵ molecules. This can be obtained as follow:
From Avogadro's hypothesis, 1 mole of any substance contains 6.02x10²³ molecules. This implies that 1 mole of ethane also contains 6.02x10²³ molecules.
Thus, 6.02x10²³ molecules are present in 1 mole of ethane.
Therefore, 1.25×10²⁵ molecules are present in = 1.25×10²⁵/6.02x10²³ = 20.76
Therefore, 20.76 moles of ethane contains 1.25×10²⁵ molecules.
Finally, we shall determine the number of mole of Hydrogen in 20.76 moles of ethane. This can be obtained as follow:
Ethane has formula as C2H6.
From the formula, 1 mole of ethane, C2H6 contains 6 moles of Hydrogen atoms.
Therefore, 20.76 moles of ethane will contain = 20.76 × 6 = 124.56 moles of Hydrogen atoms.
Therefore, 1.25×10²⁵ molecules of ethane contains 124.56 moles of Hydrogen atoms.
I believe the correct answer from the choices listed above is the third option. The kinetic theory explains that heat is due to the motion of molecules. Temperature is the measurement used to measure heat and is directly proportional to the average kinetic energy of the molecules.
Carbon Dioxide is the answer