Answer:
An alkali metal present in period 2 have larger first ionization energy.
Explanation:
Ionization energy:
The amount of energy required to remove the electron from the atom is called ionization energy.
Trend along period:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required.
Trend along group:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus. Thus alkali metal present in period 2 have larger ionization energy because of more nuclear attraction as compared to the alkali metal present in period 4.
Answer:
D) How many valence electrons the atom contains.
This is the only closest one
because the number of electrons in the outermost shell is the correct answer
Before............................
Answer:
I think it's C or D Sorry if I'm Wrong
Explanation:
it just makes the most sense to me
1) Balanced chemical reaction
H2SO4 (aq) + 2NaOH(aq) ----> Na2SO4(aq) + 2 H2O(liq)
2) Molar ratios
1 mol H2SO4 : 2 mol NaOH : 1 mol Na2SO4
3) Number of moles of NaOH
M = n / V => n = M * V = 1.0 M * 0.018 liter = 0.018 mol
of NaOH.
4) Determine the number of moles of H2SO4 using proportionality
1 mol H2SO4 / 2 mol NaOH = x / 0.018 mol NaOH
Solve for x:
x = 0.018 mol NaOH * 1 mol H2SO4 / 2 mol NaOH =0.009 mol H2SO4
5) Calculate the molarity using 0.009 mol and 25 mililiters
M = n / V = 0.009 mol / 0.025 liter = 0.36 M
Answer: the concentration of the H2SO4 is 0.36 M