2x + 2(x + 2) = 24
2x + 2x + 4 = 24
4x = 24 - 4
4x = 20
x = 20/4
x = 5
The value of x that holds true for the equation is : x = 5.
So the width of the rectangle is 5 inches and the length is (x + 2 = 5 + 2) = 7 inches
let's firstly convert the mixed fraction to improper fraction and then take it from there, keeping in mind that the whole is "x".
![\stackrel{mixed}{5\frac{5}{6}}\implies \cfrac{5\cdot 6+5}{6}\implies \stackrel{improper}{\cfrac{35}{6}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{7}{3}x~~ = ~~5\frac{5}{6}\implies \cfrac{7}{3}x~~ = ~~\cfrac{35}{6}\implies 42x=105\implies x=\cfrac{105}{42} \\\\\\ x=\cfrac{21\cdot 5}{21\cdot 2}\implies x=\cfrac{21}{21}\cdot \cfrac{5}{2}\implies x=1\cdot \cfrac{5}{2}\implies x=2\frac{1}{2}](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B5%5Cfrac%7B5%7D%7B6%7D%7D%5Cimplies%20%5Ccfrac%7B5%5Ccdot%206%2B5%7D%7B6%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B35%7D%7B6%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B7%7D%7B3%7Dx~~%20%3D%20~~5%5Cfrac%7B5%7D%7B6%7D%5Cimplies%20%5Ccfrac%7B7%7D%7B3%7Dx~~%20%3D%20~~%5Ccfrac%7B35%7D%7B6%7D%5Cimplies%2042x%3D105%5Cimplies%20x%3D%5Ccfrac%7B105%7D%7B42%7D%20%5C%5C%5C%5C%5C%5C%20x%3D%5Ccfrac%7B21%5Ccdot%205%7D%7B21%5Ccdot%202%7D%5Cimplies%20x%3D%5Ccfrac%7B21%7D%7B21%7D%5Ccdot%20%5Ccfrac%7B5%7D%7B2%7D%5Cimplies%20x%3D1%5Ccdot%20%5Ccfrac%7B5%7D%7B2%7D%5Cimplies%20x%3D2%5Cfrac%7B1%7D%7B2%7D)
I can’t seem to look at the bottom two answers and the two ( A and B) are not correct. So you’re left with either C or D
3/8=0.375
2/5=0.4
0.38=0.38
0.375<0.38<0.4
therefore: 3/8,0.38,2/5
*Remember that you can convert fractions to decimals by dividing the numerator by the denominator! This makes it much easier to compare :)
Answer:
84? Not sure but pretty sure
Step-by-step explanation:
In a straight line, the word can only be spelled on the diagonals, and there are only two diagonals in each direction that have 2 O's.
If 90° and reflex turns are allowed, then the number substantially increases.
Corner R: can only go to the adjacent diagonal O, and from there to one other O, then to any of the 3 M's, for a total of 3 paths.
2nd R from the left: can go to either of two O's, one of which is the same corner O as above. So it has the same 3 paths. The center O can go to any of 4 Os that are adjacent to an M, for a total of 10 more paths. That's 13 paths from the 2nd R.
Middle R can go the three O's on the adjacent row, so can access the three paths available from each corner O along with the 10 paths available from the center O, for a total of 16 paths.
Then paths accessible from the top row of R's are 3 +10 +16 +10 +3 = 42 paths. There are two such rows of R's so a total of 84 paths.