Answer:
K = 361.369
Explanation:
C2H4(g) + H2O(g) → CH3CH2OH(g)
∴ ΔG°f(298.15K) CH3CH2OH(g) = - 174.8 KJ/mol
∴ ΔG°f(298.15) C2H4(g) = 68.4 KJ/mol
∴ ΔG°f(298.15) H2O(g) = - 228.6 KJ/mol
⇒ ΔG°f(298.15) = - 174.8 - ( - 228.6 + 68.4 ) = - 14.6 KJ/mol
∴ R = 8.314 E-3 KJ/mol.K
∴ T = 298.15 K
⇒ K = e∧(-(-14.6)/((8.314 E-3)(298.15)))
⇒ K = e∧(5.889)
⇒ K = 361.369
It’s the process of detecting a change of a objects position relative to its surroundings
The answer to your question is,
C. Cloud of dust and gas in space.
-Mabel <3
Answer:
ΔG = - 442.5 KJ/mol
Explanation:
Data Given
delta H = -472 kJ/mol
delta S = -108 J/mol K
So,
delta S = -0.108 J/mol K
delta Gº = ?
Solution:
The answer will be calculated by the following equation for the Gibbs free energy
G = H - TS
Where
G = Gibbs free energy
H = enthalpy of a system (heat
T = temperature
S = entropy
So the change in the Gibbs free energy at constant temperature can be written as
ΔG = ΔH - TΔS . . . . . . (1)
Where
ΔG = Change in Gibb’s free energy
ΔH = Change in enthalpy of a system
ΔS = Change in entropy
if system have standard temperature then
T = 273.15 K
Now,
put values in equation 1
ΔG = (-472 kJ/mol) - 273.15 K (-0.108 KJ/mol K)
ΔG = (-472 kJ/mol) - (-29.5 KJ/mol)
ΔG = -472 kJ/mol + 29.5 KJ/mol
ΔG = - 442.5 KJ/mol
Answer:
c.
Explanation:
If the object starts to slide it must be on a slope.
There are 2 forces acting on the object - gravity and the friction between the object and the surface.
If sliding starts then the forces must be unbalanced.
The force of gravity is greater than the friction.